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ABSTRACT

When testing a computer program? it is not usually 
clear when to stop testing and? at the same time? have some 
level of assurance that the program is correct. This 
decision? as well as the selection of test cases? is often 
done in an ad hoc manner.

This dissertation addresses a technique that can be 
used to gain assurance that the quality of test cases are 
improving. First? a metric is developed to measure the 
effectiveness of a set of test cases developed using a 
particular testing approach? such as statement coverage? 
branch coverage? multiple condition coverage? path 
testing? cause-effect graphing and mutation analysis. A 
single measurement approach for test cases is developed? 
regardless of the test approach used to generate the test 
cases. This metric is used to evaluate both structural 
and functional methods for generating test cases. Next? 
a composite metric is constructed based on metrics 
developed for the approaches that were evaluated. This 
composite metric is shown? for the examples studied? to 
increase as the number of errors discovered increases.

ABSTRACT v
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That is, by adding more test cases in a manner that 
increases the composite metric* one is likely to find more 
program errors than by adding test cases in a random 
manner. In addition* by applying regression analysis* 
some of the components of the composite metric are shown 
to be a predictor of the reliability of the programs in 
the sample studied.

It is also shown that the cause-effect graphing and 
equivalent normal form approaches to test case generation 
produce the same test cases. The equivalent normal form 
method is more algorithmic and easier to implement.

ABSTRACT vi
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CHAPTER 1* INTRODUCTION

X.l INTRODUCTION

A generalized metric is not available to measure the 
completeness of collections of test cases. As will be 
discussed later* individual methods of measurement are 
available for specific testing approaches; however* no 
overall measurement exists. The purpose of this
dissertation is to develop a metric that can be used to 
assess the relative ability of test cases to uncover 
errors. The metric developed* based on an expanded 
completeness measure* can be used to evaluate any set of 
test cases* regardless of the method used to generate the 
test cases.

When testing a computer program* it is not usually 
clear when to stop testing and* at the same time* have some 
level of assurance that the program is correct. This 
decision* as well as the selection of test cases* is often

Chapter 1* Introduction 1
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done in an ad hoc manner. This paper will help toward 
developing an answer to these questions.

Chapter 1 is an introduction to testing that defines 
the terms to be used and explains why testing is necessary. 
In Chapter 2 many of the most common testing approaches 
are classified and described. This chapter is used as a 
base for Chapter 3> in which the metric for measuring test 
sets is developed. In Chapter A* the concepts developed 
in Chapter 3 are implemented on four programs taken from 
the literature. It is shown that for all examples in this 
chapter* the higher the value of the derived metric* CA* 
the greater the number of known errors that are discovered. 
Chapter 5 verifies the results of the previous chapter by 
evaluating programs that were written for this purpose* 
instead of being taken from the literature. Also included 
in this chapter is the development of a statistical model 
to help convince us that the measurements taken are an 
estimate of the percent of errors that will be found. In 
Chapter 6* a summary of the results is given and idoas for 
future research are discussed.

Chapter 1* Introduction
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Appendix A is simply a summary of the empirical data 
discussed in Chapter A. The specifications given to the 
subjects who wrote the programs discussed in Chapter 5 are 
included in Appendix B. Appendix C shows the equivalence 
of the cause-effect approach and the equivalent normal 
form (ENF) approach for generating test cases. This is 
significant due to the availability of algorithms to 
implement the ENF methodology. Included in Appendix D are 
the details of the statistical analysis discussed in 
Chapter 5. Appendix E contains a Nassi-Shneiderman chart 
for the text reformatter program discussed in Chapter 4.

1.2 SUMMARY OF FINDINGS

A summary of the major findings of this dissertation 
follow:

i. The Cause-effect graphing approach is algorithmically 
equivalent to the ENF procedure used in the testing of

Chapter 1> Introduction 3
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circuits. The ENF approach is more algorithmic and easier 
to use for large applications. This is discussed briefly 
in section "2.2.4 Equivalent normal form" on page 34 and 
explained by means of an illustrative example in "Appendix 
C* Equivalence ENF and C-E procedures" on page 131.

ii. All test methods can 
a uniform manner with a 
discussed in section " 3.2 
measure" on page 64.

be measured for completeness in 
range from 0 to 1. This is 
An extension of the completeness

iii. The mutation concept is a super set of all other 
testing approaches that result in the building of test 
cases. This point is covered in section " 3.3 Test Methods 
as a Subset of Mutation" on page 70.

iv. There is a composite completeness measure* based on 
various testing approaches* that is monotone nondecreasing 
with the number of errors discovered. This is shown 
throughout "Chapter 4* Examples" on page 74 and summarized 
in section "4.5 Discussion of examples" on page 101.

Chapter 1* Introduction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

v. The components of thi composite completeness metric can 
be used to predict the reliability of a program. This is 
discussed throughout Chapter 5 and summarized in " 5.5 
Results Obtained from the Model" on page 115.

Other contributions of lesser significance include 
the classification of testing methods shown in Figure 1 
on page 18. A clear and simple classification scheme had 
not been previously developed.

1.3 INTRODUCTION TO TESTING

A survey of the literature (Myers, 1976; Miller, 
1978; Glass, 1979; Wilson, 1983) reveals that between 40% 
and 75% of a program's life cycle cost is attributed to 
testing, retesting and error analysis activities. It is 
worth noting that only 5% of the software literature is 
devoted to testing (Gillion, 1983), a sign that this aspect 
of Computer Science is not as well understood as other 
areas. A justification for further research into the area

Chapter 1, Introduction 5
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can be seen by realizing that a 10% savings in test time 
would result in a $500 million saving per year (based on 
500*000 programmers* a 40% average life cycle effort for 
testing and a $25*000 average salary). This does not 
include any saving based on using less computer time and 
the cost savings by having software (available earlier.

The problems of unreliable software dates back to the 
first complex hardware and software installation* the SAGE 
System of the early fifties. The Air Force spent 
approximately ten billion dollars on the SAGE system but 
could only obtain a mean time to failure rate of about two 
hours. Almost all their failures (94%) were caused by 
software problems* 1% by hardware problems and 5% by 
operator error. In France seventy two meteorological 
balloons were incorrectly blown up due to a software error 
(Myers* 1976) and in 1962 the first space probe to Venus 
was aborted due to an error in one line of code in the on 
board computer (Manna and Waldinger* 1978). Recently the 
first manned space shuttle was delayed due to a software 
malfunction. These are examples of some of the problems 
that could have been avoided if the software had been 
properly tested. There is a list compiled of about twenty

Chapter 1* Introduction 6
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five serious problems caused by errors in software 
(Neumann# 1985)# including three recent plane crashes.

There are several approaches used to increase the 
reliability of software. The first involves what is 
generally referred to as testing (an exact definition will 
be given later). The second is formal program proving 
techniques. A third approach to increase the reliability 
of software is a collection of design# analysis and 
management techniques that are applied# for the most part# 
prior to the end of the coding phase. Testing and program 
proving# on the other hand# are applied most often after 
a set of operational code is produced. There is a 
historical differentiation between design and code# 
however# some recent innovations# such as a detailed 
design using decision tables# that can be compiled into 
operational code can cause confusion on which phase one 
is in and# therefore# which tool to use. For the purposes 
of this dissertation# operational code is that document 
which a programmer will normally use to solve operational 
problems. For example# if one writes a decision table that 
is compiled into assembler language# and the assembler 
language is normally used to solve problems# then the

Chapter 1# Introduction 7
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assembler code would be considered the operational code; 
if the decision table document is normally used to solve 
problems* then it would be considered the operational 
code. Although this is not a precise definition* it is 
developed enough for the concepts to be clear.

It is clear that a large percentage of errors are 
introduced in the design phase of a project* 80% is one 
estimate (Alberts* 1978)* so it is not surprising that a 
number of design methods influence the reliability of 
software. Top down development (Alberts* 1978)* 
considering testing in the design phase by making 
provisions for software monitors (Hansen* 1978); 
restricting programming language facilities to increase 
the possibility of later showing that programs perform* 
as specified (Reynolds* 1980); generating a set of 
programming standards; decision tables (Hogger* 1977) are 
several of the methods that are likely to increase the 
reliability of the end product. For the most part their 
influence* although intuitively justified is intangible 
and has not been measured. During the coding phase factors 
that influence the end reliability are the use of higher 
level languages (Boehm* 1978) structured programming*

Chapter 1, Introduction 8
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design and code inspections (Fagan, 1978), and Nassi 
Shneiderman charts (Chapir; L>74). " A comprehensive list
(Glass, 1979; Myers, 1976) explains the methodologies that 
can be used to increase reliability. They include modular 
programming, change reviews, ' peer reviews, HIPO 
documentation, preventive maintenance and many other 
concepts.

Methods that increase the reliability of software, 
such as, design walk-throughs, code inspections, and 
structured programming, are often classified as static 
testing or validation techniques. In addition, there are 
a number of software tools (Boehm, McClean and Urfrig, 
1978; Osterwiel, 1976; Ramamoorthy, and Ho, 1978; Howden, 
1978) that statically analyze programs and report the 
suspected errors. These potential errors typically 
include output unit violations, subroutine calls with 
incorrect parameters, and variables that are not 
referenced. From one aspect, static error detection using 
automated tools is an extension of the compiler functions.

One of the goals of discussing software testing and 
program proving is to make the practicing programmer aware

Chapter 1, Introduction 9
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of these tools and concepts. Today testing is done mostly 
in an ad hoc manner based on the programmer's experience 
and intuition pertaining to the portions of the program 
that should be exercised. Too often testing is completed 
when the programmer has a good feeling about his code or» 
even worse, when the time allocated for testing is over.

1.3.1 Definition of terms

One of the problems in studying the software 
reliability and testing literature is the sometimes 
inconsistent definition and use of terms. It is common to 
treat software reliability and software testing in an 
informal manner without explicitly explaining the meaning 
of each. The following definitions are attempt to 
standardize the terms that are used in this paper:

Software testing, also referred to as testing, is the 
process of collecting and interpreting evidence about a 
program’s suitability for operational use (Goodenough,

Chapter 1, Introduction 10
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1980), not, as is comxonly assumed, a process of finding 
and removing errors from a program.

Debugging is the process of locating and correcting a known 
error in a program (Myers, 1976). It is related to 
testing, since during the testing process, errors are 
discovered and must be corrected; however, no debugging 
tools or technigues are covered in this paper.

Program verification is the idea that one can state the 
intended effect of a program in a precise way that is not 
another program, and then prove rigorously that the 
program does (or does not) conform to this specification 
(Deutsch, 1973).

Software reliability is the probability that a software
fault which causes a deviation from the reguired output 
by more than specified tolerances, in a specified 
environment, does not occur during a specified exposure 
period (Ramamoorthy and Bastani, 1982). It should be
pointed out, that although testing is not a poor method 
of increasing software reliability, design tools and
programming standards, also have a major effect on

Chapter 1, Introduction 11
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software reliability. Also note that the age of the 
software is not specifically mentioned. A program that 
satisfies this criteria is said tc be reliable.

Correctness or program correctness is satisfaction that a 
program's output meets specifications* independent of its 
use of computing resources* when operating under permitted 
conditions (Goodenough* 1980). The basis of the theory 
of testing (Goodenough and Gerhart* 1975) include several 
important definitions:

A program P is said to be completely correct with respect 
to f» the intended function* if and only if P computes only 
the correct values of f from arguments of f and is 
undefined for arguments outside the domain of f. This 
definition (Shankar* 1982) is a little more formal than 
Goodenough's correctness definition* however* a program 
is completely correct (Shankar's definition) if and only 
if it is correct (Goodenough's definition). Shankar also 
defines sufficient correctness if P computes values for 
arguments not belonging to the domain of f. It is 
important to note that a program may be correct and not 
reliable (for example an input parameter outside of

Chapter 1* Introduction 12
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permitted condition may result in a program fault) or 
reliable and not correct (for example the particular input 
parameter that will cause a fault is never run).

Robustness is the property of continuing to do something 
reasonable in the presence of unforeseen environmental 
changes (Chudleigh, 1982).

A set of inputs T is an ideal test for program P, relative 
to specification Ft if the correct performance of P on T 
implies the program is correct on its entire input space.

A set of inputs T is said to be a reliable test, if and 
only if, its data selection criteria, C, ensures that every 
test satisfying C succeeds or every test fails. 
Reliability is really a measure of the data selection 
criterion. Tests of correct programs are 100% reliable.

A test data criteria C, and tests T are said to be 
complete, (T,C) if the data selection criteria, C, is used 
in selecting a particular set of test data. A more 
theoretical definition of complete (Howden, 1982) is as 
follows: P is a program, F is a set of functions

Chapter 1, Introduction 13
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associated with P. M is a mapping such that for each 
subset T of the domain P and each function f in F* M 
defines a subset of the domain f. Assume for each function 
f in F there is an associated set of functions S(f). Let 
T be the set of tests for P. Then T is a complete set of 
tests for P relative to F and [S(f): f in F].

The data selection criterion* C» is said to be valid if 
and only if* for every error in the program there exists 
a complete set of test data capable of revealing the error. 
This means that for each error in a program it is possible 
to select data that will uncover it* no guarantee is given 
that that data will be selected.

A test is successful * that is the test instance succeeds* 
if it produces normal program output when it is run. That 
is for each test case if the expected output is equal to 
the actual output then the test is successful* otherwise* 
an error has been discovered.

It is then our goal to select a data selection 
criterion* C* that is both reliable and valid. The primary 
theoretical point of Goodenough's and Gerhart's paper is

Chapter 1* Introduction 14
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called the fundamental theorem of testing and can be stated 
as follows: If there exists a consistent, reliable, valid
and complete criterion for test set selection, for a 
program P and if a test set satisfying the criterion is 
such that all test instances succeed, then the program is 
correct (Adrion, Branstrad and Cherniavsky 1982).

1.3.2 Why is testing necessary

A question that should be asked is why not build 
programs correctly in the first place; that is, so they 
conform to the requirements and no rework is necessary. 
Unfortunately, present state-of-the-art techniques do not 
support that goal; although it is a worthwhile objective. 
Since, as stated before, a large amount of time is devoted 
to testing, it makes sense to develop some formal testing 
methodologies. The most straightforward method of 
insuring reliable software is to simply exercise the 
program by generating all possible inputs, running these 
inputs through the program, and comparing the computed

Chapter 1, Introduction 15
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results with the expected results. There are several 
problems with this approach* first* an oracle is required 
to determine the correct expected result. This is a 
practical problem that should not be overlooked* however* 
for the remainder of this paper the existence of such an 
oracle is assumed. The second problem is that* except for 
trivial programs* this method* referred to as exhaustive 
testing* is too time consuming to even consider. For 
example a simple 10 element sort* with the domain limited 
to the digits 0 tp 9 would take 100 years to complete an 
exhaustive test assuming each test takes one second to 
execute. It would clearly be unacceptable to wait 100 years 
to guarantee 100% reliability. Test cases must be a subset 
of the exhaustive set picked in an intelligent manner to 
convince us that the software under test is reliable or 
the converse.

There are two classifications of program testing 
static and dynamic. In static testing (or more accurately 
static analysis) program execution is not required* while 
with dynamic testing* the program or part of it* is 
executed and the output is either automatically or 
manually compared with the anticipated results. Dynamic

Chapter 1* Introduction 16
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testing methods can k. clc^.>ified as those based on 
coverage criteria and those based on other measures. 
Coverage can be based on characteristics of the internal 
program structure (white or glass box testing) or those 
based on the functions provided (black box testing). Black 
box testing and white box testing methods can be combined 
in what is called grey box testing. Figure 1 on page 18 
shows these classifications. This classification is 
slightly artificial; for example; weak mutation testing; 
a subset of mutation testing could also be considered a 
superset of branch testing. Also; symbolic execution 
could be considered a type of program proving. It should 
also be noted that the dynamic methods not based on 
coverage involve two steps. First the assertions are 
inserted or the mutant programs are developed; and second 
the test cases are developed; possibly using a coverage 
based model.

Chapter lf Introduction 17
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Software Reliability

Methods used prior 
to the completion 
of the coding phase

Testing

Static

Methods used after 
the completion of 
the coding phase

Program
proving

Dynamic

Based on 
internal 
structure

Coverage
based

Based on 
functions

Not coverage 
based

* Assertions
* Mutation
* Weak Mutation
* Error seeding
* Symbolic

execution
* Statement
* Branch
* Path

* Domain

* ENF
* Cause-effect

Figure 1 Classification of Reliability approaches
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CHAPTER 2/ CLASSIFICATION OF TESTING METHODS

2.1 STATIC TESTING

A number of errors, or possible errors in program 
construction can be discovered by having another program 
analyze the subject program. The basic approach to static 
analysis is to define these constraints and then write the 
programs that report violations. A common analysis 
involves the detection of variables that are referenced 
before they are initialized/ or variables that are set and 
then never again used. Although/ in the strictest sense 
these are not considered errors/ their presence is an 
indicator of a potential problem. Due to the possibility 
of different paths leading to a single reference type 
instruction/ the check to see if the variable has been 
initialized is not trivial (it may be initialized on 
several different paths). Algorithms have been developed 
to solve this problem (Fosdick and Osterweil/ 1976)/ 
referred to as the live variable problem. Static analysis
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of this kind is based on first analyzing the subject 
program to generate a data flow graph. This graph (it can 
be assumed that a graph is generated for each variable) 
shows all the statements where the variable is initialized 
or referenced. Based on the program's control structure 
it can then be determined if any rules may be violated. 
There may be a path leading to a statement that references 
a variable that has not been initialized on the path. This 
may or may not be an error; perhaps the path is not 
logically possible. These? therefore? have to be flagged 
as possible errors using pure static analysis techniques? 
since the instructions are not executed so no 
determination can be made as to the logical possibility 
of executing that path. Other conditions may also be 
include in a static checker. For example division by a 
constant of zero? loops with no imbedded change in the loop 
variable? that is a type of infinite loop; and checking 
for coding standards.

Static analysis is actually an extension of the 
compiler's error checking capability? for example most 
compilers will flag any use of a variable that is not 
defined. Static analysis techniques can flag the possible
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use of a variable that is nov initialized. Since the cost 
of running a static analyzer is relatively cheap* more of 
these functions will be built into future compilers.

In summary* static testing has the potential to 
detect a wide variety of errors that do not involve 
computational algorithms* the tools are easy to use and 
are relatively inexpensive to run. Another advantage of 
the static approach is the source of the error is usually 
also found. Many systems have been written to perform 
static checking* mostly for Fortran programs* sixteen 
operational tools are listed (Hiedler* et al.* 1982). The 
DAVE system (Osterweil* 1978; Fosdick and Osterwiel* 1976) 
ard the SQLAB system (Phoha* 1981) both incorporate static 
checking as part of their test tools. There have been 
articles published (Howden* 1978) that cover an 
introduction to static analysis.
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2.2 DYNAMIC TESTING

Dynamic testing requires that the program or part of 
it be executed in one form or another. This is usually 
accomplished by executing i the program via test cases* 
which are selected based on criteria for the approach being 
used. All of these approaches lead to the development of 
a set of test cases that* based on their individual 
criteria* provide some assurance that the program is being 
properly exercised and is therefore more reliable. 
Several comparisons of their relative usefulness have been 
published and will be discussed later* however no overall 
metric to measure the reliability gained by a given set 
of test cases has been developed. The statement coverage 
criteria* branch coverage* multiple condition coverage and 
the path criteria are covered. Also included are the 
dynamic methods of cause - effect graphing* mutation 
analysis* and error seeding.
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2.2.1 Statement coverage;

One method of selecting a subset of the exhaustive 
set of possible inputs is to select them in a manner that 
will assure that all instructions are executed at least 
once. This is referred to as statement coverage. Although, 
this is a rather weak condition, it is certainly required, 
for unless there are instructions in the program that can 
never be logically#executed (a problem in itself), one can 
have no confidence that the instructions that are not 
executed are correct. A slightly stronger selection 
requirement called branch coverage requires that in 
addition to all statements being executed at least once, 
every branch direction must be traversed at least once. 
The branch coverage condition is stronger than statement 
coverage because additional test cases will be required 
to exercise the branch directions that do not result in 
any unique instructions being executed. For example a 
false branch that simply branches around the first 
instruction along the true path.
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In order to determine if a given set of test cases 
satisfy the statement or branch coverage criteria software 
or hardware probes must be inserted into the system. The 
first step in inserting software probes is to generate a 
control graph (decision to decision path) of the program* 
and then inserting counters after each leg of all branch 
instructions. After the test cases are executed the 
counters should be displayed and all zero value counters 
used to develop additional test cases. There is not an 
algorithm that can be generally used to determine the input 
required to exercise a specific branch. This problem has 
been solved for some specific cases (Huang* 1978). More 
efficient* in some cases* algorithms have been developed 
to minimize the number of software probes required 
(Probert, 1982). This reduces one of the concerns with 
software probes* the added execution time spent updating 
them and the possibility of that delay hiding a timing 
error. This is especially a potential problem when workinn 
with real time programs. The PROBE system (Probert* 1982) 
is an example of a implementation of these ideas. An 
article on how to insert software probes (Wang* 1981) has 
been written.
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Hardware probes can be developed along the same 
lines. They are more expensive; however* the problems 
encountered by changing the program's timing are avoided. 
Branch coverage is sometimes used as a trivial path 
coverage when it is too difficult to develop the stronger 
path cover. An example of this is a- system developed to 
test some Motorola 6800 microprocessor programs (Yaccob 
and Hartley* 1981).

Statement coverage has been defined (Miller* 1977) 
as Cl coverage* and branch coverage as C2 coverage* CO 
coverage is that based entirely on the programmer's 
intuition. An additional criterion called multiple 
condition coverage (Myers* 1976) requires branch coverage 
plus enough test cases to cover all possible combinations 
of condition outcomes in any direction. Multiple condition 
coverage is stronger than branch coverage when compound 
decisions are found in the program.
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2,2.2 Path testing

Path Testing requires that each path through the 
program be exercised by at least one *cest case. There are 
three major problems with this requirement; first some 
paths may be logically impossible to generate a test case 
to execute; second; some paths may be generated that are 
never possible to execute in practice (these are called 
infeasible) third; generally the number of possible paths 
is very large. This is due to the fact that unique paths 
are generated for loop iteration; that is traversing a 
particular loop 100 times is a different path then 
traversing it 101 times. In the path testing approach the 
paths are usually divided into a finite and manageable
number of classes with at least one test case generated
from each class. In an unabridged form the path testing 
criteria is at least as strong as the branch coverage 
criteria. Path testing; even with the unrealistic
assumption that every path in a program is tested does not 
detect all errors (Howden; 1973). It is shown that; for
some published programs; 100% path testing does uncover a 
majority of the errors.
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Some systems have been written that address the 
generation of test cases to exercise individual paths. The 
DAVE system (Clark* 1976) will attempt to generate data 
for a given path; however* the path (decision to decision 
graph) must be available and passed to the system. In order
to determine the data to exercise a path its input
constraints must be linear (since* in general it is 
impossible to find the input that causes a particular 
instruction* and therefore path to be executed). This
system has the unique feature that symbolic execution is 
used to execute the path. The concept of symbolic execution 
is explained in "2.2.8 Symbolic execution" on page 46. 
The resulting set of equations is then solved* if possible* 
to determine the required input. Variable references are 
not allowed since they are difficult to symbolically 
execute.

The CASE6EN system (Ramamoorthy* Ho and Chen* 1979)
operates very similar to the DAVE system* the paths are 
generated by some other means and then symbolically 
evaluated to find the proper inputs. A method of array 
reference is proposed to postpone the symbolic evaluation
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of a variable array reference until test data is generated. 
The RSVP system (Miller* Paige and Benson* 1978) is 
implemented using a tree representing the iteration of a 
program* the decision to decision paths are then printed 
as an aid to the person doing the testing.

A backtracking technique (Miller and Melton* 1978)*
I

instead of symbolic execution* is sometimes used to 
generate a test case for each path once the directed graph 
of the program flow is generated. A disadvantage of this 
method is that manual intervention may be necessary when 
iteration is involved (which is the case with most 
programs).

It has been shown (Gabow* Maheshwari and Osterweil* 
1976) that there is an efficient way* based on graph 
theory* to find a path from one statement to another* 
through a specific set of vertices or to show that no such 
path exists. One of the problems listed earlier was that 
some paths through the program* although semantically 
possible can never be logically executed. These paths if 
generated are useless and* in fact* cause effort to be used 
to try to satisfy their constraints* an impossible task.
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One approach to this problem is to generate sets of 
mutually unexecutable pairs of branches in a program (for 
example number > 1 and number x number < number). These 
pairs are referred to as impossible pairs and currently 
have to be manually generated after analysis of the 
programs structure. Gabow has shown that the IPP 
(impossible pair constrained path) is NP complete. This 
means that an analysis that computes paths and insures that 
no impossible pairs are included in any path is exponential 
in run time.

The primary problem when developing a path testing 
strategy is is to determine the criteria for path selection 
from the possibly infinite set of paths. A common approach 
is to limit those paths involving loops to: zero* one and 
the maximum number of iterations. It has been
statistically shown* (Duran and Wiorkowski* 1980) a 
counter intuitive result* that insuring the testing of all 
paths does not give a better assurance of program 
correcrness. A concise summary of the path testing problem 
is that it is enormously difficult and therefore can only 
be treated with proper reserve (Yacco* 1981).
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The basis for statement, branch and path testing is 
a representation of the program structure called a 
directed graph (digraph) or decision to decision paths. 
Based on graph theory it is essentially a flowchart with 
only decision portions of the program included. It is a 
relatively simple procedure, given a program and the 
semantic rules to generate a digraph. Cyclomatic trees 
(Stickney, 1978), an improved version of a digraph can be 
used to generate more efficient test cases and to ease the 
placement of probes. Although it is possible to generate 
a digraph for each program it is not possible to write a 
general algorithm to generate the input that will cause a 
specific instruction to be executed. This is of particular 
concern in the methods that are based on coverage.

It has been shown (Tia, 1980) that statement, branch 
and path testing are not sufficient to demonstrate a 
program is correct. This is proven by showing the time 
complexity for some simple programming constraints is much 
higher than the time complexity of the above approaches. 
Two new criteria are developed based on the domain 
strategy, Cpath to test paths and Cprog to test programs. 
Cpath basically requires the selection of test points from
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each section of the partition w ' the input space as well 
as the boundary conditions. Cprog is an extension of this 
concept. These two criteria are not meant to guarantee 
the production of correct programs; however* their purpose 
is to serve as a guide for test case selection.

t ( *

A special type of path testing called domain testing 
has been proposed (White and Cohen* 1980). Each path has 
a domain* or set of program inputs that cause that path 
to be executed. The domain testing concept is to select 
test values that are near the boundary between different 
paths. There are two types of possible program errors 
involving the selection of paths. The first* selection 
of the incorrect path is addressed by domain testing* the 
second* the missing path cannot be discovered using this 
approach. The underlying concept is that points near the 
boundary of a path domain are more likely to generate 
errors. Since this approach has the same drawbacks as 
general path testing* for example the handling of loops* 
it should not be used alone* but in conjunction with other 
methods. Several measures of how serious a domain error 
is were given by White and later expanded (Clarke* Hassell 
and Richardson* 1982).
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2.2.3 Cause-effect graphing

Another method used to generate a complete set of test 
cases is cause-effect graphing (Elmendorf, 1976). All the 
causes (input conditions or system transformations) are 
identified and given a unique identifying number. Next, 
all effects (output conditions or changes in the syistem 
state) are identified and numbered. A graph is then 
generated by linking the causes to the effects with the 
proper logical relationships. The relationships used are 
AND, OR, identity and NOT as well as various constraint 
symbols. Parentheses are used to indicate the scope of the 
AND's and OR*s.

As the size and ability to work with the cause-effect 
graphs increases quickly as the program specifications 
becomes more complex, the resulting cause-effect graph, 
developed from the Nassi-Shneiderman charts become very 
complex and difficult to generate. The next step in using 
the cause-effect graphing methodology is to generate a 
limited entry decision table that represents the portions 
of the graph that makes each output condition true (one
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at a time). The method used is to sequentially select each 
effect to be true and to trace back through the graph to 
find all combinations of causes that will make the given 
effect true. Each combination of effects is recorded in 
the decision table as a row. Some possible combinations 
may be ignored as they are not all necessary to generate 
the test cases and there may be an unreasonable number of 
combinations. All possible combinations may in fact mask 
certain causes. As an example; if four conditions are ORed 
together; it is only necessary to iterate four input 
conditions to make this true (each input true; while the 
others are false) instead of the fifteen possible 
combinations that make the output true. The final step 
is to convert the columns of the decision table into test 
cases. This is accomplished in a trial-and-error manner 
by inspecting the decision table and generating a test case 
for each column.

For example; if input A and input B combine to form 
condition C; and if condition C or Input D cause output 
E; then the cause-effect diagram would be as shown in 
Figure 2 on page 35. This would yield the limited entry 
decision table shown in Figure 3 on page 36. Next the four
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rows of this table are used as attributes for the test 
cases to be developed.

Cause-effect graphing is used as a procedural method 
to generate test cases. In- addition* insight- is gained 
into the problem to be solved by converting the 
specifications into the Boolean graph. It can also assist 
in the discovery of incomplete and inconsistent 
specifications. At least three tools are available today 
to automate the cause-effect graph process: TELDAP*
developed by IBM; CEGAR* developed by The Bank of America* 
and one developed by Hitachi.

2.2.4 Equivalent normal form

Although hardware and software test generation 
concepts and functions are completely different* certain 
hardware concepts can be applied to software. One 
advantage of software over hardware is that software
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and

or

Figure 2 Example of Cause-effect graph

cannot develop any defects. The next method to generate 
a set of test cases is based on the equivalent normal form 
(FNF) of a hardware circuit (Friedman and Menon* 1979). 
We can apply the hardware ENF procedure to software by 
representing the program as a collection of hardware gates 
as was done in the in the cause-effect approach. The ENF 
is developed by expressing the output of each gate (output 
conditions or intermediate states for software) as a 
function of the inputs and at the same time preserving the 
identity of each gate. For example* if the inputs to an 
AND gate are A and B and the output is C» then the ENF for 

C would be represented as follows: ENF(C)= (A AND B)[C].
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Figure 3 Decision Table for Cause-effect approach

If C and D are then inputs to an OR gate with output E» 
then the ENF for E is as follows:

ENFCE )= (C OR D)[E ] = ((A AND B)[C] OR D)[E].

Figure 3 is a graphical representation of this
relationship. Each character (for example, A[C]) is 
called a term. Terms connected by ANDS are called
literals. The next step is to test each literal in an ENF
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for stuck at 0 by assigning lcs to all literals in the term 
containing it and making air. other terms equal to zero. 
It is only necessary to test one literal per term using 
this method (testing more will result in duplicate tests). 
The ENF algorithm also requires that tests be generated 
for the stuck at 1 fault (a false output is expected) for 
all output conditions.

By selecting the inputs and outputs* as in the 
cause-effect graphing approach* one goes through the same 
mechanical procedures as in cause-effect graphing* the
test case criteria generated is also identical. The 
equivalent normal form approach is more algorithmic and 
is* therefore* simpler to implement. Given the graph 
generated in the cause-effect approach* it is possible to 
write a program to implement the ENF algorithm and compute 
the matrix that is used to generate test cases. In
summary* the ENF hardware approach has some merits as a
base for a software method due to the fact that ENF 
algorithms and programs are available in the public
domain* while cause-effect programs would have to be 
developed. Appendix C shows* for an example program* that
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the cause-effect approach and the ENF approach generate 
an identical set of test cases.

2.2.5 Mutation analysis

Mutation analysis is a method used to help the 
programmer generating the test cases develop a set of 
comprehensive test cases (Acree* 1980; DeMillo* 1980; 
Budd * 1980; DeMillo* 1983) This approach calls program*
P» that is assumed to be correct or almost correct* to be 
modified to form programs P1*P2»...PN» that are each very 
similar to program P. These unique programs are called 
mutants of F and are generated by changing a statement or 
statements in P. Examples of the changes are: move the
decimal point* reverse table dimensions* delete an 
instruction* substitute one variable name for another* and 
reversing the direction of a move instruction.

Test cases for P are then generated either informally 
or by using formal methods. The test cases are run against
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programs P,P1»P2,...PN and a..-..- of the P1,P2,... .PN mutant 
programs that compute exactly the same results as P for 
all the test cases are considered active mutants. The other 
mutant programs differ from P by computing a different 
result for at least one of the test cases and they are, 
therefore, eliminated from further consideration. The next 
step is to generate additional test cases, that when run 
will differentiate between P and the set of active mutants. 
This can be accomplished by analyzing the instructions 
that wore changed in the active set, an analysis that 
sometimes leads to the discovery of an error in the base 
program P.

Some of the active mutants may be functionally 
equivalent to the base program P (for example if the 
instruction in program P is A=(-B)**2 and the instruction 
in a mutant program is A=C+B)**2 then these two programs 
are equivalent and the mutant can be deleted from the 
active set). This process is repeated until all mutants 
are inactive or declared equivalent. The basic philosophy 
is that if the programs P1,P2,...PN are selected in an 
intelligent manner then the resulting test cases for P will 
be sufficient.
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It has been shown (Acree* 1980) that it is not 
necessary to generate a mutant with more than one change 
from the base program (for example it is not required to 
change two instructions or make two modifications to one 
instruction). This is known as the coupling effect. He

I .

has also shown that the number of mutants required is 
proportional to the square of the number of lines of code. 
Any serious implementation efforts would require an 
automatic method of generating the mutant programs and 
testing for equivalence.

Another important concept of the mutation analysis 
paradigm is called the competent programmer hypothesis * 
which states that the program* P* is correct or nearly 
correct. If P is not correct then there is a high 
probability that one of the programs* PI* P2*... PN is 
correct. This hypothesis can be stated formally as 
follows: (Budd* 1980).

A competent programmer* after giving the task 
sufficient thought and pursuing the normal process 
of programming and debugging* has probably written
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a program that is either correct or "almost" 
correct, in that it differs from a correct program 
in simple ways.

The purpose of this hypothesis or assumption is to assure 
that a totally incorrect program is not shown, by way of 
mutation analysis, to be correct. For example, given a 
sort program and a set of test cases that separates the 
sort program from all its mutants, nothing is shown if the 
specifications of the program call for a square root 
program. Practically this is not a problem if every test 
case includes an expected result, as well as input 
parameters.

The concept of weak mutation testing has been 
developed (Howden, 1982). Mutation testing is modified 
in two ways, first given program P with a component C, then 
if one modifies C to form C' it is required that a test 
be developed to differentiate C' from C. It is not 
necessary for the test to differentiate P from P'. The 
second difference is that in the construction of C* only 
certain types of mutants are generated based on error 
studies (for example what types of errors are most
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prevalent). They include wrong relation operator, o f f  by 
a constant, wrong coefficient, etc. There are two 
advantages of using weak mutation testing (versus mutation 
testing), there are fewer mutants due to the construction 
of limited types and it may be easier to generate the 
mutants. It is interesting that this method is similar 
to domain testing for testing of arithmetic relations, it 
is also similar, or a superset of, branch testing (a 
trivial example would have C* equal to the decision 
instruction).

2.2.6 Assertion Checking

Assertion checking involves the writing of special 
instructions called assertions that are then evaluated as 
the program is executed. These are usually tests for the 
range or values of input variables, internal variables and 
output variables. For example, a routine to compute the 
square root of x and put in a variable SQRTx could have 
an input assertion: ASSERT (X >= 0) and output assertion
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ASSERT (SQRTx >= 0) and SQRTx * SQRTx = x). The use of 
assertions is a two step process; first the assertion 
statements are written and placed in the subject program; 
second# the program is executed using test cases developed 
using another method. These cases are independent of the 
number and content of the assertions# although a bad choice 
of test cases may cause the assertions to not be executed 
or not executed with effective input. Although it is 
possible that some simple assertions (for example ASSERT 
X is not modified) could be checked with a static analyzer# 
execution is usually required. It would be possible to 
write the assertions after the coding phase is complete# 
however# since a knowledge of the internal program logic 
is required# it makes more sense to write the assertions 
as the program code is written.

Assertion statements are usually additions to higher 
level languages and include an error reporting or stopping 
function when the conditions are not met. The languages 
should have the capability of being compiled with or 
without the assertion statements; in that way the extra 
overhead of executing these checks and the extra storage 
required could be avoided after the testing phase. Another
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approach would be to have a program switch to turn on and 
off the assertion overhead as required in the compiled 
program. This would save some of the execution time but 
none of the space.

Assertions can also 'check the absolute variable 
range; relative variable ranges (for example ASSERT x=y); 
physical units of variables; loop invariant; maximum 
number of loop iterations* etc. There are several 
disadvantages of the assertion approach. First* there is 
not a generally accepted methodology to decide where to 
insert assertions* what they should check etc. It has been 
shown (Hiedler et al.* 1982) that the number of assertions 
is not related to the Halstead or McCabe metric for program 
complexity. Programmer intuition and experience must be 
used to decide what assertions to include. Like any other 
instructions* these must be designed* tested* documented* 
debugged* etc. The second difficulty with the assertion 
approach is that it must be used in conjunction with 
another method to generate test cases. A third
disadvantage is that in time dependent programs* the 
function of executing the assertions may modify the 
output.
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2.2.7 Enron seeding

Error seeding is discussed under the category of 
dynamic testing because it requires the program under test 
to be executed. This- subject could also have been 
discussed in a section on reliability models; for it is, 
in fact* a reliability model that is used directly in 
dynamic testing (Mills* 1972). When a program is written 
and ready to be tested* errors are purposely inserted into 
the code by a party other than the tester. These seeded 
errors are then found during the testing phase* as are 
other indigenous errors. Based on the ratio of seeded to 
indigenous errors found* a prediction can be made on the 
remaining indigenous errors. One of the problems with this 
simple model is the assumption that all errors have the 
same probability of being found. Another related concern 
is the assumption that seeded errors are inserted 
randomly. Although this method appears rather intuitive 
in practice* it has not been used often and* with a few 
exceptions (Duran and Wiorkowski* 1978* Ramamoorthy and 
Bastani* 1982* Musa* 1980) is not discussed in the 
literature. In part* this is due to the seemingly
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unnatural operation of inserting known errors into a 
program that is supposed to be correct.

2.2.8 Symbolic execution

In all of the approaches discussed so far? except
assertion checking* actual test data is generated and used 
as input to the program under test. A completely different 
approach* symbolic execution* requires no input data.
Instead* the program is executed and whenever input is 
required* a symbolic parameter is inserted. For example* 
when the instruction READ DATA is encountered* DATA is 
assigned a symbolic value* say A. Later* if the 
instruction PUT DATA +1 INTO WORK is encountered* then WORK 
is set to A +1. In the case of a conditional branch* the 
parameters are kept in all directions* so a snapshot of 
the symbolic execution may say* for example* WORK is A +1 
if X >= 0 and WORK is A if X < 0. After this approach is
propagated through the program* the output can be
expressed via symbols and logical operations. The user
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is then expected to manually inspect the output and correct 
any errors. For example:- in a ?rogram to solve a quadratic 
equation for X* you would expect a symbolic output of the 
form:

X = -b + SQRT (b2 ~ 4ac) and- X = -b - SORT fb^ - qac)
2a 2 a

S o * as can be seen; symbolic execution is not a 
typical test method since test data is not needed; however* 
it can be used in conjunction with other methods. A 
successful looking symbolic execution does not guarantee 
the program is reliable. In our quadratic equation 
example* under some conditions 4ac may cause an overflow 
and therefore* a program fault.

There are several problems with this approach. 
First* the output may be extremely complex and hard to 
manually recognize as the proper formula. For example* 
is X = -b/2a + (b * b - 4ac)l/2 /2a correct in the example 
above? The second problem is that of array references. 
It becomes very complex due to the fact that a program 
variable (an array element) may have a variable embedded* 
A(l) would be acceptable but A(DATA) where DATA is
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calculated adds complexity very quickly. Some of these 
problems have been partially solved as is discussed below.

An advantage of symbolic execution can be seen in 
mathematical or algorithmic type applications. It is not 
clear how these concepts: fwould apply to more general type 
applications» say a data, base update program.
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CHAPTER 3, EFFECTIVENESS AND COMPLETENESS

3 .1  PROBLEM DESCRIPTION

The problem is to develop a uniform measure of test 
case effectiveness. Some exist and are directly related 
to a test method* for example:

Branch Coverage: 
Statement Coverage: 
Error Seeding: 
Mutation:
Path:

% of Branches covered 
% of Statements covered 
% of Errors Found 
Number of Mutants Left 
% of Paths Exercised

It should be noted that these measures are defined from 
zero percent to one hundred percent; however* the 
relationship of one test method to the others is not well 
understood from the above metrics. Some methods are not 
easy to measure* for example:
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Assertions 
Symbolic Execution

In this chapter a metric will be developed* with a 
range of zero to one* that can. b'e* used to help one evaluate 
the usefulness of various test cases. The significance 
of this metric is that prior to its development in this 
dissertation there was not a continuous measurement* as 
is discussed below* a metric did exist that was either one 
or zero. Another contribution is the idea that the metric 
developed can be used to help one evaluate the relative 
usefulness of a collection of test case sets. The approach 
is developed in general and specifically applied to six 
test approaches* however* it can be expanded to all test 
methods. In this way* there exists* for each test method* 
a common measurement scheme. For example* it will be 
possible to compare a set of test cases developed using 
statement coverage criteria with a set of test cases 
developed using cause-effect graphing.

The purpose of running test cases is to help 
demonstrate that a program is correct; that is* the output
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meets the specifications w*.- operating under permitted 
conditions. The metric ci. .1 „ped helps us to make an 
objective decision on whether the program is correct* 
instead of the more subjective decisions that are usually 
made.

In the following section we will define effectiveness 
for functions* expand the definition to completeness of 
programs and then expand these definitions to the range 
of zero to one* instead of binary values zero or one.

3.1.1 Effectiveness definition

Given a function f» f: D->R» with 

D = domain(f)

R = codomain(f)
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Range(f) is the set of all y in R such that
there exists an x in D with y = f(x)

Let £f be defined as all f* with domainCf*) = D

If T is a subset of D arrd SMF&as <a subset of £f then T is
effective for f relative 4poreSf» if and only if, T*0 and
for all f' in Sf, f*(T) = f(T)- implies f 1 =f.

This is based on the definition in the literature 
(Howden, 1982) but restated to make it clearer for use in 
this paper. This concept is the same as the equal 
transformation concept in mathematical algebra.

For example, let f(X) = X 2
Sf = (X2 , X3 , 3X - 2)

The results of these functions can be seen in Figure 4 on 
page 53.

Now we assume that the domain of Sf = (0,1,2,3) and let
T = (1). The T is not effective for f relative to Sf since
X 2 = X 3 over T and X 2 t  X 3 over the entire domain of Sf
(for example for X = 2).
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Input
1 2  3

X 2
X 3
3X - 2

1 4  9 
1 8 27 
1 4  7

Figure 4. Effectiveness example

The test set T = (1, 2) is still not effective since
for f* = 3X - 2, f*Cl) = fCl) = 1 and f*C2) = fC2) = 4 and
there exists an X, say X = 3 such that f*(3) *  f(3). The
test set T = (1, 2, 3) is effective for f relative to

Sf == (X2 , X 3 , 3X - 2);

however, since the set of all f* in Sf with f = f* over T 
is empty. That is to say the test set (1 , 2, 3) will 
differentiate X2 from X 3 and 3X - 2. It should be noted 
that it may not be effective if another function is added 
to Sf say:

(X2 -1) (X2 - 4) CX2 - 9) + X2
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since f*(X) = f(X) for all X in T for this function and 
there is an X, 0, where f(X)*f'(X)

3,1,2 Statement coverage effectiveness

Now for a little more complicated example* let f(x) 
= PCx) where P is the program shown in Figure 5 on page 
55. That is* the function f is that which is generated 
by P» or f(x) = PCx) for all x in the domain of f. The 
domain is (0*1*2*3) and the codomain of f is (0*1*2). This 
means that for each x in (0*1*2*3) there exists a y in 
(0*1*2)* such that P(x)=y.

That is* f is the function computed by the program P. Let

Sf = (Pl», P 2 ', . . . P 8 ')

where the Pn' are defined as the program formed by 
replacing instruction N in program P with the following:
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1 IF A = 1 GOTO 5
2 IF A = 2 GOTO 7
3 B = 0 
A GOTO 8
5 B = 1
6 GOTO 8
7 B = A
8 END
Figure 5. Statement coverage example

n B='ABEND*;END

The results of these functions can be see in Figure 6 on 
page 56.

Now the test set T = (1) is not effective for f
relative to Sf since for A = 1, the instructions of P 
numbered 1, 5, 6 are executed so Pl'Cl), P5'C1), P6'C1)
are not equal to PCI); however P2fCl), P3*C1), PA'Cl), 
P7'(l) and P8'(l) are all equal to PCI) and they are not 
equal over the entire domain of Sf. If T = Cl, 2) then
PCx) = P3*Cx) = PA'Cx) for x = Cl, 2) and they are not
equal over the entire domain so T = Cl, 2) is also not
effective. It can be seen that T = CO, 1, 2)
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B

Input
1 2 0

P 1 2 0
PI' ABEND 2 0
P 2 ' 1 ABEND ABEND
P3' 1 2 ABEND
P4» 1 2 ABEND
P5 * ABEND 2 ABEND
P6' ABEND 2 0
P7' 1 ABEND 0
P8' I ABEND 0

Figure 6. Statement effectiveness example

differentiates all the P* from P so the set T = (0* 1* 2) 
is effective for f(x) = P(x) with respect to the P's. The 
reason it is effective is that for any P' » P is not equal 
to that P* over the entire set T. In fact* the 0 added 
to T could be any real *  1* 2.

The function computed by P is

m = 1 f (m) = 1
m = 2 f(m) = 2
m * (1*2) f(m) = 0
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It can be seen that any set T that is effective is also a 
set that will result in statement coverage; any set that 
is not effective will not result in statement coverage. 
By defining Sf in this manner it can be seen that statement 
coverage can be stated in terms of effectiveness. The 
concept of completeness; defined in the next paragraph 
will eliminate the awkwardness of dealing with functions 
and programs that implement those functions.

3.1.3 Completeness definition

Given a program P; let

D = domainCP) » that is all x where PCx)
is defined

R = codomain(P)

RangeCP) is all y in R such that; there exists 
an x in D such that y = PCx)

Let f be the function corresponding to P; that is f: D->R
and .for x in D; fCx) = PCx). We say f<->P. Given program;
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P, and programs, £  = (PI, P2,...Pn) where each Pi has the 
same domain, D) and functions, £  = (f1,f2,...fn) defined 
by f<->P. Then if T is a subset of D, then T is complete 
for P relative to £  if it is effective for f relative to 
£  .

This is a simplification and restatement of Howden's 
definition. In our previous example T = (0, 1, 2) is a 
complete set of test cases for P relative to the P ’s. We 
can say that T is complete relative to PI *,P2',...P8’ or 
equivalently T provides statement coverage.

3.1.4 Branch coverage completeness

Again if f(x) = PCx), let the set of P' be formed such 
that for each branch N in P there are two P ’s. One, P n ’, 
that will result in a different output (from P) when branch 
N is taken (and the same output when branch N is not 
taken), and one, Pn” , that will result in a different
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output (from P) when branch N is not taken (and the same 
output when branch N is taken).

for example if P is:
1 B = 0
2 IF A = 1 GOTO 4
3 B = 1
4 END

We can define P ' as:
1 B = 0
2 IF A = 1 THEN

B = ABEND
3 B = 1 
A END

and P " as:
1 B = 0
2 IF NOT (A=1) THEN

B = ABEND
3 IF (A=1) GOTO 5
4 B = 1
5 END

The functions defined area as follows:
P P * p "

A B A B A B
1 0  1 ABEND I 0

*1 1 *1 1 *1 ABEND

So if T = (0)* we have
P(0) = 1
P*(0) = 1
P ”  (0) = ABEND
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and since P'CO) = PC0)» T = (0) is not complete. T = (1) 
is also not complete since 

PCI) = 0  

P'Cl) = ABEND 
P* 'Cl) = 0

that is P'*C1) = P C D *  The test set T = C-0» 1) is complete

PCO) = 1 
P'CO) = 1  

P " ( 0 )  = ABEND

PCI) = 0  

P ’Cl) = ABEND 
P " C 1 )  = 0

That is» P is always differentiated from P* and P*'. We 
see that the set where PCx) = P'Cx) for T is emptyr the 
same is true of PCx) = P"Cx).

It is obvious that the set C0>1) provides branch coverage. 
By defining Sf in this manner it can be seen that branch 
coverage can be stated in terms of completeness. As a 
simple extension of branch coverage* multiple condition 
coverage can also be stated in terms of completeness.
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3.1,5 Mutation analysis completeness

As we have seen for different testing approaches the 
challenge is to develop the set of P' in a way that will 
lead to our intuitive understanding of T. For mutation 
this is a straightforward, the P* set is the set of 
mutations of P.

If for a test set T, there exists a P* such P*(x) =
PCx) for all x in T then either they are equivalent (in
mutation parlance, P* dies) or the test set is not 
complete.

3.1.6 Error seeding completeness

Given the program P let the Pn' be formed such that 
each Pn* differs from P by one error that is intentionally 
inserted. If for a test case set T, P and one of the P*s 
get the same result, since they are constructed to be
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different, then T is not complete. Once they produce 
different output, the seeded error is discovered. Looking 
at it this way, error seeding is a special case of 
mutation; however, in the error seeding approach the 
length of time it takes to find errors and the number of 
test cases run is used to predict the remaining number of 
indigenous errors.

3.1.7 Assertion completeness

Assertions don't really fit into this scheme since 
the assertions are added to code and then exercised with 
test cases that are developed using another approach. At 
a minimum we could assure that each assertion is at least 
exercised once using a simplified version of the P's for 
statement coverage.
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3.1.8 Weak mutation complete;ess

In weak mutations testing a program P is segmented 
into sections Cl>C2>...Cn. A mutation transformation is 
applied to a given Ci to produce £i = (Ci*» Ci"» Ci'" ...). 
The test cases must then differentiate Ci from Ci . That 
is* Ci must compute a different value from each of the £i 
although* the program P with Ci and a version with one of 
the £i may result in the same output.

Part of Howden's complex definition of completeness 
is based on the need to support this segmented program. 
A simpler approach would be to consider T to be complete 
for P relative to £  » if T is complete for Ci relative to 
Ci for all i <= n. P is the collection of programs formed 
from the Ci's.
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3.2 AN EXTENSION OF THE COMPLETENESS MEASURE

The purpose of this section is to develop a metric 
to measure software correctness. Howden's completeness 
metric is used as a base. ?.rpor each testing methodology, 
N and each set of test cases, T, and program, P, and 
variations of the program £  = (P1,P2,... PN), T is either 
complete (1) or not complete (0) relative to N and £_*. 
First, an extension of completeness is defined to extend 
the possible number of values from just 0 and 1 to all the 
reals in the range 0 to 1. This will be based on the set 
£  and our intuition about what should be tested. The 
resulting metric is applicable to both structural based 
testing approaches (for example, statement coverage) and 
functional based testing approaches (for example, 
cause-effect graphing).

Given a set of testing methods, N = (Ml»M2>...Mn); a 
program P; a set of programs £ = (PI,P2,...Pn) with the 
same domain as P; and a set T of test cases, then CA, the 
composite completeness metric is defined as:
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CACT,P, £  )= CCM1,T*P, £ ) + . . .  CCMn >T»P» £  ) or 

n
CA(T,P, £  )= C<Mr*T*P, £  )

r=i

It should be noted that CA is based on a specific test set* 
T* a specific program* P» and the £  programs. Since it 
is usually clear from the context* CA(T»P» £  ) is
abbreviated to CA in the remainder of this paper. For the 
same reason* C(Mr) has been used and will continue to be 
used as an abbreviation for CCMr»T»P» £  ).

Example programs are taken from the literature to 
show that the higher the CA the less likely that errors 
will occur. Then we can answer such questions as whether 
another test approach would help* should we work to raise 
one of the C's to one* etc. The time and effort of doing 
this is not included* that is we are assumed to have 
unlimited time* not a real world situation.

Given £  = <PI,P2*...P n )* program P* and test set T,
the meaning of complete with a range of 0 or 1 has been 
defined. It will now be expanded to the range 0 to 1 by 

the following extended definition of completeness.
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If T is complete for P relative to m of the elements of P 
then T is (m/n) * 100 percent complete or m/n complete.

For example if T is complete on all P then the value 
is one. If T is not complete for any of the elements of 
P then the value is zero. If T is complete for 25% of the 
elements of P then value is .25. By using this method we 
have extended the definition of complete from just 0 and 
1 to the range 0 to 1.

Statement coverage, as we discussed in an earlier 
section can be thought of as having the set P defined by 
individually changing each instruction (that is one 
element of P for each instruction). Therefore, the 
complete metric is a representation of the percent of 
instructions that are executed by the test set T, one 
hundred percent statement coverage results in a complete 
metric of one. This is represented as C(Statement) = 1.
If no statements are executed C(Statement) = 0, if 25% are 
executed C(Statement) = .25.
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For branch coverage* assuming each branch instruction 
has two possible outcomes* we can consider the £  as having 
two members for each branch (see an earlier section* for 
details on how to generate P for branch coverage). So 
C(Branch) is one if we have 100% branch coverage* C(Branch) 
is .75 if we have 75% branch coverage etc. It is 
straightforward to expand the ideas used in the branch 
approach to develop CCMultiple Condition) such that it is 
one if and only if there is 100% multiple condition 
coverage.

In the cause-effect graphing approach a procedure is 
used to develop a cause-effect graph* which is used to 
generate a table from which we obtain the number of test 
cases and attributes of each test case. The elements of 
P can be constructed in the following manner. If T* the 
test set* is composed of test inputs* Tl* T2»... Tm then 
a Pq is developed to correspond to each Tq and having the 
property that* when all the attributes that define Tq are 
true then P and Pq when exercised by Tq will give different 
results. In addition* when all the attributes that define 
Tq are not true then P and Pq when exercised by Tq will 
give the same results. In this way* we have defined the
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C(Cause-effeet) such that it represents the percent of the 
test cases required that are exercised. It should be noted 
that C(Cau‘se-ef f ect) is objectively obtained from the 
cause and effect conditions that are subjectively chosen 
by the person testing the code. This is not the case with 
the branch; statement and multiple condition metrics since 
they are based on the structure of the program and not the 
functions to be performed.

For path testing an approach similar to the 
cause-effect generation of £  is used. For each path the 
elements of £  can be built as follows. If Tq is a test 
case that exercised path q> then Pq should be formed such 
that Pq should produce the same result when path q is not 
exercised. In this way CCPath) is a measure of the paths 
that are exercised.

Mutation testing can be measured directly by the 
completeness metric. C(Mutation) is simply the percent 
of mutant programs; in the set; £  ; that are eliminated 
by the mutation algorithm. That is C(Mutation) is defined 
as:
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(Number of dead mutants)/(Total number of Mutants).

This concept can also be extended to other 
approaches, for example, in the error seeding methods, 
CCError seeding) is:

(Number of found seeded errors)/(Total number of seeded 
errors).

As in mutation and cause-effect graphing, we must let 
common sense prevail and select a reasonable number of 
seeded errors in an intelligent manner. For example, if 
a small number of errors are seeded (say one) and if it 
is found, the C value of one could lead to a false sense 
of assurance. Assertions, domain testing, weak mutation 
and all other testing methods can also be measured in this 
manner.

The next step is to generate a composite completeness 
metric, CA, as the sum of the completeness metric for the 
approaches used. The methods to be studied are statement 
coverage, branch coverage, multiple condition coverage, 
path analysis, cause-effect graphing and mutation
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analysis. In this case* applying the concepts covered in

section " 3.2 An extension of the completeness measure" 
on page 64:

CA = C(Statement) + C(Branch) +
CCMultiple Condition) + C(Path) +
C(Cause-effect) + C(Mutation)

The problems chosen to compute the composite completeness* 
CA * for are a text reformatter program* triangle 
classification program* a quadratic equation program and 
a sort program. Each is discussed in Chapter 4.

3.3 TEST METHODS AS A SUBSET OF MUTATION

One of the problems in dealing with test case and test 
set evaluation is the various different methods used to 
generate the test cases. It would be ideal if there were 
only one method of generating test cases and one simple 
approach to measuring the effectiveness of these test 
cases. As is explained below* it is possible to consider 
most testing approaches as a subset of mutation. As far
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as can be determined> this has not previously been reported 
in the literature. This result is not specifically used 
further in this dissertation; however, it serves to link 
the individual approaches discussed earlier in this 
chapter.

! ,
We will show in this section that every test approach 

that results in the generation of test cases can be 
considered as a subset of the mutation approach. Those 
that do not generate test cases such as program proving 
and symbolic execution are not considered in this 
discussion. For a given criteria and a program, P ,  a set 
of test cases T = (Tl, T2» ...Tn) are needed; from this 
set T we will construct a set P = (PI, P2» ... Pm) of
mutants of P. We will then show that if T is complete 
relative to P then T satisfies the criteria for the testing 
method that is being applied.

To construct the elements of Pq of P , for each unique 
Tq in T, we generate a mutant Pq with the following 
properties:
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1) Pq, when exercised ay Tq, will produce a different 
result than P when exercised by Pq.

2) Pr, for r t  q, when exercised by Tq will produce the 
same result as P when exercised by Pq.

*

This is certainly possible, for at a minimum, we could add 
a section to the beginning of program Pq to check for the 
input that is associated with test case Tq and, if present, 
generate an output outside the range of output of P. If 
not present, the same code as in P would be executed.

Now if T is complete for P relative to P , then the 
criteria for this testing method is met. By construction 
the set T is complete relative to £  for the program P.

It has been shown that all methods that generate test 
cases can be considered a mutation based approach by 
selecting the mutant programs based on the testing 
criteria. We have already covered how to do this 
algorithmically for statement coverage, branch coverage, 
multiple condition coverage, path testing and cause-effect 
graphing. Although this is an interesting observation,
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it is intuitively easier to think of statement coverage 
as exercising every instruction in a program versus 
differentiating a collection of mutants from a parent 
program. The same is true of the other methods discussed.

> ■ !
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CHAPTER 3, EXAMPLES

3 ,1  TEXT REFORMATTER EXAMPLE

As a first example six methods of test case selection 
are considered: statement coverage* branch coverage*
multiple condition coverage* path testing* cause-effect 
graphing and mutation* and a completeness value C is 
computed for each. The composite completeness measure CA 
is then computed as the summation of the C*s. The text 
reformatter program (Goodenough and Gerhart* 1975) 
slightly modified (Walsh* 1983) is listed in Figure 7 on 
page 75. The Nassi-Shneiderman chart for this program is 
shown in Appendix E.

The problem can be stated as follows: Given an input
text having the following properties:

11: It is a stream of characters* where the characters are 
classified as break and nonbreak characters. A break
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1 ALARM :=FALSE;
2 BUFPOS:= 0;
3 FILL: =o;
4 REPEAT
5 INCHARACTER(CW)
6 IF CW=BL OR CW=NL OR CW = ET
7 THEN BEGIN
8 IF BUFP0S*0
9 THEN BEGIN

10 IF FILL+BUFP0S<MAXP0S AND FILL*0
11 THEN BEGIN
12 OUTCHARACTER(BL);
13 FILL:=FILL+l;END
14 ELSE BEGIN
15 OUTCHARACTER(NL)»
16 FILL:=0;END
17 FOR K :=1 STEP 1 UNTIL BUFPOS DO
18 OUTCHARACTER(BUFFER(K))J
19 FILL:=FILL+BUFPOS;
20 BUFPOS:=0 J END END
21 ELSE
22 IF BUFP0S=MAXP0S
23 THEN ALARM:=TRUE
24 ELSE BEGIN
25 BUFPOS:=BUFP0S+1J
26 BUFFER(BUFPOS):=CW END
27 UNTIL ALARM OR CW=ET;

Figure 7. Text Reformatter Program

character is a BL (blank), NL (new line indicator), or ET 
(end-of-text indicator).

12: The final character in the text is ET.
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13: A word is a nonempty sequence of nonbreak characters.

14: A break is a sequence of one or more break characters.

(As a result, the input can be viewed as a sequence of
words separated by breaks with possibly leading and 
trailing breaks, and ending with ET.)

The program's output should be the same sequence of
words as in the input with the following properties:

01: A new line should start only between words and at the 
beginning of the output text, if any;

02: A break in the input is reduced to a single break 
character in the output;

03: As many words as possible should be placed on each
line (that is, between successive NL characters);

04: No line may contain more than NAXPOS characters (words 
and BL's);
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05: An oversize word (that is* a word containing more than 
MAXPOS characters) should cause an error exit from the 
program (that is, a variable Alarm should have the value 
TRUE);

We will assume throughout this example that MAXPOS = 3 so 
that short test cases can be developed. For C(Statement) 
to be 1, three test cases are needed, the following will 
suffice:

1. A, A, A,
2. A, A, BL
5. A, BL , B

This will be referred to as test set I. This set 
doesn't result in all branches being exercised in all 
directions and C(Branch) is 7/8 (7 of 8 branch directions 
are exercised). The eight possible branch conditions can 
be seen in the Nassi-Shneiderman chart in Appendix E. This 
test set also doesn't exercise all the conditions as 
required in multiple condition coverage; 10 of 11 are 
exercised so C(Multiple condition) is 10/11.
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We can add a test case:

4. NL? ET

to set I to obtain test set II which has the same 
characteristics as test set I except CCBranch) = 1.
Likewise we can add test case:

5. A ? A, A, ET

to set II to form set III which has the same 
characteristics of test set II except CCMultiple 
Condition) = 1.

The test set shown in Figure 8 on page 79 was 
developed to meet the criteria for the cause-effect 
graphing approach. Details of the cause-effect deviation 
are included in Appendix C.

Of course? CCCause-effect graphing) is l; and since 
the branch and statement test cases are a subset of IV? 
C(Branch) and CCStatement) are also 1? CCMultiple 
condition coverage) is again 10/11. Test set I covers 3
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1 . A* A* A* Ai *
2. A* A* BL* B* B, ET
3. A* BL* B* ET
4. NL , ET
6. A
7. A* BL* B* NL * ET
8. A* BL * B * BL * ET
9. BL * ET

10. ET
11. A* NL, ET
12. A* BL* ET
13. A* ET
14. A* A * BL * B, B* NL*
15. A* A* BL* B* B * BL *

Figure 8. Test'cases for C-E approach

of the 14 conditions* test set II and III each 4 of the 
14 conditions.

For the mutation approach* a set of mutants are 
developed in an intuitive manner* that is* each 
instruction is deleted* equals are changed to not equals* 
less than to less than or equal to* less than to greater
than* and to or* zero to ones* etc. Test set V is composed
of test set IV plus the following two cases:

16. A* A* BL* B* NL* ET
17. A* A* BL* B* B* BL* C* BL* D* ET

Chapter 4* Examples 79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

\

There are about sixty mutant programs that were defined 
by modifying the original program. Those mutant programs 
that were syntactically correct were then exercised by the 
test cases in test set IV. Fifty eight of the sixty mutants 
were eliminated by this set of test cases. A small program 
was written to exercise the mutant programs and compare 
the actual and expected results.

For test sets I* II and III the most direct method 
of computing C(Mutation) is to exercise those test cases 
against the 60 mutants and determine how many are 
eliminated. Since* this is a cumbersome approach* a good 
approximation is the number of test cases included in the 
16 required for a C(Mutation) = 1 with test case V. This 
is 3/16* A/16* A/16* respectively for test sets I* II* and 
III.

A final test set VI can be formed by adding:

5 A* A* A* ET
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to test set V. This provides i. value of 2 for all the 
methods used.

Path testing requires that each path through a 
program be executed by at least one test case. For 
programs containing loops this requirement is impractical 
due to the very large or infinite number of paths that are 
possible. The paths are usually divided into a finite and 
manageable number of classes and at least one test case 
is generated for each class.

The method chosen to limit the number of paths in the 
text reformatter program is to continue with the 
assumption that the maximum line length is three and with 
the view of the program as handling one character at a 
time. If we consider that* the program can have four 
initial states* (zero to three characters in the buffer) 
then there are eighteen possible paths through the 
program. They can be enumerated as shown in Figure 9 on 
page 82.

Two paths are logically impossible and four more are 
impossible with the assumption that the maximum line
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CONDITION C-E
CAUSE

PATH
111111111

123456789012345678
CW=BL or CW=NL or CW=ET NOT 1 000011111111111111
BUFP0S=MAXP0S 2 0011----------------
BUFP0S*0 6 a i ---- OOaillllllllll
FILL+BUFPOS<MAXPOS AND 5 AND 7 ------ 000000111111

FILL*0
INITIAL BUFP0S=1 NA ------ 1 0 0 1 0 0 1 0 0 1 0 0
INITIAL BUFP0S=2 NA ------ 010010010010
INITIAL BUFP0S=3 NA ------ 001001001001
CW=ET OR ALARM=TRUE 8 OR NA 010101000111000111
Figure 9. Paths for text reformatter

length is three. The remaining twelve paths can be covered 
by test set Vllt which includes the test cases 1, 3-8, 10, 
and 13-15 from set IV, (there are only eleven cases due 
to multiple loops with an individual test case). A summary 
of the test cases included in each set is shown in 
Figure 10 on page 83.

As we expected, the sum of the C*s under 
consideration, CA, increases from test set I to VI. A 
summary is shown in Figure 11 on page 84.
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TEST
CASE

TEST SET
II III VI VII

10
12
13
14
15
16 
17

Figure 10 Test cases 
Reformatter

sets for Textversus

Throughout this dissertation, we will measure the 
number of structural errors in a program, not the number 
of domain errors that will cause an incorrect result. The 
prime reason for this approach is to prevent the imprecise 
measurements that would result by having, say, one 
structural error that is responsible for an infinite 
number of domain errors. The next step is to determine 
if by increasing the value of CA the program is more
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TEST SET

I II III IV V VI VII

Statement
Coverage

1 1 1 1 1 1 1

Branch 7/8 1 1 1 1 1 1
Multiple
Condition
Coverage

10/11 10/11 1 10/11 10/11 1 1

Cause
Effect
Graphing

3/14 4/14 4/14 1 1 1 11/14

Mutation 3/16 3/16 3/16 58/60 1 1 14/16
Path
Testing

3/12 4/12 5/12 11/12 11/12 1 1

CA 3.44 3.77 3.86 5.79 5.82 6.0 5.75

Figure 11. Completeness Metric for Text Reformatter

reliable. One method is to determine which of the five 
sample errors in the Goodenough paper would be found by 
each' of the test sets. A program was written in BASIC to
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answer this question. The results are shown in Figure 12 
on page 86.

None of the test sets will uncover one of the errors 
due to our selection of a maximum line length of three. 
The error that is not found is deleting line 13 of the
program: FILL = FILL + 1. The variable FILL is then one
less than it should be; however, no errant decisions are 
made, since the maximum number of characters on a line is 
dust three and there are no combinations of space available
on a line and space used on a line that will cause an
incorrect branch by the decision instruction that has FILL 
as a operand. If we increase the maximum number of 
characters on a line to any number greater than three, this 
instruction would be significant. The errors found 
represent various classes of errors including: 
inappropriate path selection, missing path and missing 
action. We can see from the above table, that for this 
example the higher the value of CA the higher the number 
of errors found.
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TEST SET CA NUMBER OF 
ERRORS FOUND

TOTAL NUMBER 
OF ERRORS

I 3.44 2 5
II 3.77 3 5

III 3.86 3 5
IV 5.79 3 5

VII 5.82 3 5
V 6.00 4 5

VI 5.75 4 5

Figure 12. CA versus errors for Text Reformatter

4.2 TRIANGLE CLASSIFICATION EXAMPLE

The next example is the triangle classification 
problem that can be stated as follows: Determine whether
three integers representing three lengths constitute an 
equilateral, isosceles, or scalene triangle or cannot be 
the sides of any triangle. A simple basic program to solve 
this problem is shown in Figure 13 on page 87.

For C (Statement) to be 1, the following four test cases will 
suffice:
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50 READ A, B, C
100 IF NOT (A<B+C) THEN GOTO 500
110 IF NOT (B<A+C) THEN GOTO 500
120 IF NOT (C<A+B) THEN GOTO 500
130 IF (A=B) AND (B=C) THEN GOTO 600
140 IF <A=B) AND <B*C) THEN GOTO 700
150 IF (A#B) AND (A=C) THEN GOTO 700
160 IF (A*B) AND (A*C) AND (B=C) THEN GOTO 700
170 IF CA#B) AND (A*C) AND (B*C) THEN GOTO 800
500 PRINT "NOT A TRIANGLE": END
600 PRINT "EQUILATERAL TRIANGLE": END
700 PRINT "ISOSCELES TRIANGLE": END
800 PRINT "SCALENE TRIANGLE": END

Figure 13. Triangle classification program

1 . 1» 1> 1
2. 2, 2, 3
3. 3, 4, 5
4. 1 , 0 , 0
For C(Branch) = 1 we need four additional test cases for
the branch directions not already exercised* a sufficient 
set is as follows:

5. 0* 1* 0
6 . 0* 0 * 1
7. 2, 3, 2
8. 3, 2* 2

Since there are no complex decision points CCMultiple 
Condition) is always equal to C(Branch). Also since there
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are no loops in this program C(Path) is always equal to 
C(Branch).

The next approach to be considered for this program 
is the mutation concept. About forty mutant programs are 
defined as follows: replace ail less than signs by less
than or equal to* replace less than by greater than* 
replace equals by not equal* replace not equal by equal* 
replace A by B* and by deleting each instruction. Several 
of the resulting mutant programs are impossible due to 
conflicting conditions. When the remainder are run 
against the existing eight test cases* two mutants remain. 
The test cases that must be added to kill these two mutants 
are:

9. 6, 2, 4
10. 3* 2* 4

The next approach used was cause-effect graphing with 
the causes as follows:
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1. A*B
2. B/C
3. B=C
4. A=C
5. A<B+C
6. B<A+C
7. C<A+B

The relationships were straightforward and the effects 
were a equilateral triangle* an isosceles triangle* a 
scalene triangle or no triangle. The analysis showed six 
test cases were required; a set that satisfies the criteria 
is 1* 2* 3* 4* 7 and 8.

A summary of the test sets is given in Figure 14 on 
page 90.

Six relatively simple errors (Myers* 1976) were then 
inserted in the program to see which test cases would 
detect them as shown in Figure 15 on page 91.

As we can see, the number of errors found increase 
with an increasing CA* the same number found with the last
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CASES CASES CASES CASES
1 - 4 1 - 8 1 - 1 0 1-A,7,8

STATEMENT
COVERAGE

1 1 1 1

BRANCH
COVERAGE

.5 1 1 6/8

MULTIPLE
CONDITION
COVERAGE

.5 1 1 6/8

PATH
COVERAGE

.5 1 1 6/8

CAUSE-EFFECT
GRAPHING

A/6 1 1 1

MUTATION 27/AO 38/AO 1 6/10

CA 3.8A 5.95 6.00 A. 85

Figure 1 4 . Completeness Metric for Triangle Program

two sets due to the small difference in the CA's and since
they were relatively simple errors.
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TEST CA NUMBER OF TOTAL NUMBER
CASES
1 - 4 3.84

ERRORS FOUND 
4

OF ERRORS 
6

1-4,7,8 4.85 5 6
1 - 8 5.95 6 6
1 - 1 0 6.00 6 6

Figure 15. CA versus errors for triangle problem

4.3 QUADRATIC EQUATION EXAMPLE

A program to solve a quadratic equation (Kernighan 
and Plauger, 1976) was slightly modified and run in 
Fortran. The problem is to solve the quadratic equation 
AX2 + BX + C = 0, that is, to find the two roots, one root 
or give an indication that it is not solvable. The program 
is shown in Figure 16 on page 92.
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WRITE (*,102) A,B,C,
102 FORMAT (*OA= *, F12.5, B='F12.5' C=*F12.5)

IF (B.EQ.O.AND.C.EQ.O) GOTO 15
IF (B .N E .0.AND.C .NE.0) GOTO 50
IF (A) 30,20,30

15 IF (A.EQ.O) GOTO 9035
20 WRITEC*,9010)
9010 FORMAT ("OTRIVIAL CASE, TWO OR MORE ZEROS')

RETURN
30 IF (C) 60,40,60
40 XA=B/A

XB=0
GOTO 100

50 IF (A.NE.O) GOTO 60
XA=-C/B
XB=0.0
GOTO 100

60 Q=B*B-4.*A*C
XX=-B/(2.*A)
IF (Q) 80,70,80

70 XA=XX
XB=XX
GOTO 100

80 QA=ABS(Q)
XS=SQRT(QA)/(2.*A)
IF (Q) 110,110,90

90 XA=XX+XS
XB=XX-XS

100 WRITE (*,9020) XA,XB
9020 FORMAT (5H Xl= ,F12.5,3X,4HX2 = ,F12.5)

RETURN
110 XA=XS

XB=-XS
WRITE(*,9030) XX,XA

9030 FORMAT (5H XI = ,F12.5,2H + ,F12.5)
WRITE (*,9031) XX,XB

9031 FORMAT (5H X2 = ,F12.5,2H + ,F12.5)
RETURN

9035 WRITE (*,9036)
9036 FORMAT ('0A=0 PROGRAM STOPPED')

RETURN
END

Figure 16. Quadratic Equation Program
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This program* which is i ot structured* has several 
known errors that were included as found in Kernighan and 
Plauger. By trial and error it can be seen that statement 
coverage can be accomplished (that is C(Statement) = 1)
by the following test cases:

1. A = 0 B = 0 c = 0
2. A = 0 B = 1 c = 1
3. A = 0 B = 0 c = 1
A. A = 1 B = 1 c = 0
5. A = 1 B = s c = 4
6. A = 1 B = 2 c = 1
7. A = 1 B = 1 c = 1

For Branch coverage to be complete* C(Branch) = 1* 
one needs two additional test cases:

8. A = 1 B = 0 C = 0
9. A = 1 B = 0 C = 1

For CCNultiple Condition) = 1* one must insure that 
all the IF statements are exercised in all directions* this 
requires two additional test cases:

10. A = -1 B = 0 C = 1
11. A = 1 B = 0 C = -1
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For the cause - effect graphing approach# the inputs 
were as follows:

1) A = 0
2) B2 - 4AC >0
3) B2 -4AC = 0
4) B2 -4AC <0
5) B = 0
6) C = 0

The outputs were the proper roots# found by evaluating the 
normal solution: Root 1 = C-Bri+-SQRT-CB2 -4AC))/2A and Root
2 = (-B -SQRT (B2 -4AC))/2A» with special cases to avoid 
division by zero# to handle imaginary numbers# and to 
handle single and no root solutions. The result is that 
for CCCause - effect) = 1, it is sufficient to exercise 
the program with test cases 1»5#6 and 7. It should be 
noted that cause - effect graphing does not use the actual 
program structure in generating the criteria for test 
cases; they are entirely based on the functions to be 
performed and the evaluator's knowledge of the problem.

The next approach to be evaluated is path testing. 
Since there are no loops in this program# it is reasonable 
to obtain a C(Path) = 1. Careful and tedious analysis 
shows that there are eleven theoretical paths through the 
program and ten are logically possible. These ten paths 
can be covered by test cases 1 - 10.
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For the mutation approach* f:lve types of mutants were 
selected:

1) A replaced by B
2) XA replaced by XB
3) EQ replaced by NE
4) NE replaced by EQ
5) Each line deleted

This is a limited set (there are fifty-six total mutants) 
due to the practical problems of generating and exercising 
mutant programs without a tool. Test cases 1 - 1 1  were 
used as a base and all the mutants were found with these 
cases.

A summary of the coverage discussed is given in 
Figure 17 on page 96* some of the results* that are less 
than one* represent the percent of the test cases present 
(a C of 1 would represent 100%) rather than the percent 
of coverage. Since these two metrics should be relatively 
close* this is done to reduce the computational 
complexity.

There were seven errors identified in the Kernighan 
and Plauger program. The number of errors that would be
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Test Cases

1-7 1-9 1-11 1*5*6,7 1-10
Statement
Coverage 1 1 1 4/7 1
Branch
Coverage 14/16 1 ' i • 1 4/9 1
Multiple
Condition
Coverage 9/12 10/12 1 4/11 11/12
Cause-Effect 
Graphing 1 1 1 1 1
Mutation 7/11 9/11 1 4/11 10/11
Path
Testing 7/10 9/10 1 4/10 1

Total CA 4.95 5.54 6.0 3.13 5.81

Figure 17. Completeness
equation

metric for quadratic

discovered by the methods discussed and with the test cases
selected are shown in Figure 18 on page 97.

As can be seen* the number of errors found is monotone
nondecreasing with the composite completeness metric* CA. 
One error is not found by any of the test cases; this is 
due to lack of a structured programming approach and the
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TEST CASES CA
NUMBER OF TOTAL NUMBER 

ERRORS FOUND OF ERRORS
1*5,6,7 3.13 2 7

1-7 A. 95 5 7
1-9 5.54 6 7
1-10 5.81 6 7
1-11 6.00 6 7

Figure 18. CA versus errors for quadratic program

nature of the error. The program* as written* will produce 
an incorrect message: "Trivial case* two or more zeros"
if A=0» B*0 and C=0. The correct answer is that there is 
one root at zero.

It is interesting to note that running these eleven 
test cases against the corrected program in Kernighan and 
Plauger results in three cases failing due to two errors. 
Due to the nature of the problem and the ease at which the 
results can be checked* it is natural to try the assertion 
approach on the incorrect program. If an ending assertion 
states that for any roots found AX2 + BX + C = 0 then two
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of the seven errors woul& have been found; if an additional 
assertion* that the roots not be equal was inserted an 
additional error would have been uncovered. This is due 
to the fact that some of the errors were the printing of 
incorrect error messages.

4.4 SORT EXAMPLE

In this simple example a sort fragment of a program 
(McCracken* 1974) is analyzed. The problem is to sort the 
vector A which has N elements. A program to accomplish 
this is shown in Figure 19 on page 99.

Statement coverage is relatively straightforward* for 
C(Statement) = 1 we must have one test case:

1. A=(3*2*1)

For C(Branch) to be 1 we must add a test case with 
increasing elements.

Chapter 4* Examples 98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

70 NM1=N-1
80 FOR 1=1 to NM1
90 IPI.US1 = I+1
100 FOR J=IPLUS1 to N
110 IF (A(I)OA(J)) THEN GO TO 150
120 TEMP=A(I)
130 A(I)=A(J)
140 A(J)=TEMP
150 NEXT J <
1 6 0 NEXT I
Figure 19. Sort Program

2. A=(l,2,3)

Since there are no multiple conditions in the program; 
CCNultiple Condition) is equal to C(Branch). For C(Path) 
to be 1 many additional test cases would need to be 
generated based on the value of N. In order to limit this* 
we will consider a subset of the paths that execute the 
outer loop a minimum number of times (one); a maximum (nine 
was chosen as a workable limit); and a number of loops in 
the middle (say five). The inner DO loop is executed based 
strictly on the number of outer loop iterations. For each 
path the IF statement should be executed in both 
directions. For this criteria; in addition to the test 
cases already developed we need:
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3. A=(l*2*3*9*8*5*4*7*6)
4. A=(5,3*l,2,4)

For the mutation approach* several substitutions are 
made* changing only one item at a time. The mutants are 
as follows: replace I by J* replace J by I* replace + by
-* replace - by + , replace 1 by 0* replace < by >* replace 
< by <= and* deleting each line. Exercising these mutant 
programs with the test cases developed so far results in 
five mutants (of twenty eight) that are still alive* four 
mutants are correct* although not efficient and one 
requires an additional test case to differentiate it from 
the original program:

5. A=(-1 * -2, -3* -4, 10)

Due to the relatively simple causes (if the vector 
is not in nondecreasing order* sort) and effects (a sorted 
vector)* the cause- effect approach is not very practical. 
If we assume* for the cause-effect analysis only* that the 
maximum number of elements is three* and all permutations 
of order are included* then in addition to test case 1 and 
2 we need the following:
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6. A=(l* 3, 2)
7. A=(2, 1* 3)
8. A=(2, 3, 1)
9. A= (3 * 1 * 2)

A summary of the test cases developed is shown in 
Figure 20 on page 102.

Next seven typical errors were introduced* they 
included loops off by one* inappropriate initialization 
and improper path selection. The nine test cases were 
executed to see which errors they detected with the results 
shown in Figure 21 on page 103.

As can be seen the number of errors found is monotone 
nondecreasing with the CA metric.

4.5 DISCUSSION OF EXAMPLES

The four examples that were written in two languages 
(Basic and Fortran) have shown that* for the sample
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TEST CASES
1 1,2 1-4 1-5 1, 2,

6-9

STATEMENT
COVERAGE 1 1 1 1 1
BRANCH
COVERAGE .5 1 1 1 1
MULTIPLE
CONDITION
COVERAGE .5 1 1 1 1
PATH
TESTING .25 .5 1 1 .5
MUTATION .2 . A .8 1 .4
CAUSE-EFFECT
GRAPHING 1/6 2/6 2/6 2/6 1

CA 2.61 A.22 5.12 5.32 4.90

Figure 20. Completeness metric for sort program

programs, the percent of known errors that are found by a
test set behaves in a monotone, nondecreasing manner when 
compared with the composite completeness measure, CA. The 
significance of this metric, CA, is due to the fact that
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TEST CASES CA NUMBER OF TOTAL NUMBER 
FOUND ERRORS OF ERRORS

1 2.61 4 7
1, 2 4.22 5 7
1, 2, 6 - 9 4.90 5 7
1 - 4 5.12 6 7
1 - 5 5.32 7 7

Figure 21. CA versus errors for sort program

now, for any test cases selected by a particular method 
or methods, we have a uniform measurement. This has the 
potential to be used to assess the relative usefulness of 
test case sets; to help decide how much more effort should 
be put into testing, and to help decide when to stop 
testing. Prior to the development of the CA metric, there 
was no uniform method of evaluating sets of test cases. 
The evaluation of testing methods is no longer purely 
subjective, it is more systematic and objective. For easy 
reference, a summary of the data collected in Chapter 4 
is found in Appendix A.

The reason for selecting the six test approaches that 
compose CA are two. First, they represent both white box
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and black box testing; both common approaches (statement) 
and less known and used methods (mutation). Second* the 
approaches used were not extremely difficult to implement 
with tools that are easily available. Statement* branch* 
and multiple condition coverage are relatively 
straightforward and although another person testing the 
program could develop a different set of test cases* it 
is likely that they would be similar. For path testing* 
when all paths could not reasonably be executed* due to 
loop iterations* it is important to select the path 
criteria in an intuitive and reasonable manner. It is 
possible that another person would select different path 
constraints* develop different test cases to exercise 
them* and discover different errors. The metric CA for 
path testing was based on the number of paths that were 
in the subset selected* not on the total number of possible 
paths. This is due to the high number of possible paths 
that would result in low CA values and small differences 
between CA values.

For mutation* one again has to select the mutants in 
an intuitive manner and in sufficient numbers. For 
example* it makes little sense to generate a thousand
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mutants based on the first line of multiline program and 
none based on the other lines. For the example programs* 
the mutants were based on experience. Cause-effect 
graphing can also be influenced by the level of detail used 
to develop the inputs and outputs.

As an extension to this work* a different set of test 
approaches could be evaluated* ground rules could be 
developed for path* mutation and cause-effect graphing 
concepts and more complex programs could be analyzed.
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CHAPTER 5, AN EXPERIMENT

5.1 OVERVIEW OF EXPERIMENTAL APPROACH

The purpose of this chapter is to gain some 
experimental results to lend support to the conclusion 
that the completeness metric, CA, does predict the 
percentage of errors that are found in the example programs 
and in the experimental programs. An outline of the steps 
to be taken is as follows:

1) A problem will be defined and given to the subjects. 
They will return the first pass of their program (that is 
after the first error free compile). Also to be returned 
is a list of errors that were found between the first pass 
and their final program. These errors will be considered 
the known errors. This is a reasonable approach since the 
text reformatter is used and any additional errors that 
are found, as a result of running the sets of test cases
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already developed, will be added co the collection of known 
errors.

2) The first pass programs will then be tested by 
developing six sets of test cases each; these will be 
developed by insuring that each test approach has a 
completeness value, C» of one for at least one of the six 
sets of test cases.

3) Based on the data in the previous chapter, and the 
experimental data to be collected, explain how CA will 
predict the number of errors. The first step is to develop 
an equation:

Error % = XI * C(Statement) + X2 * C(Branch) +
X3 * CCMultiple Condition) + X4 * C(Path) +
X5 * CCCause-Effect) + X6 * CCMutation) +
XO

This will be done based on running a regression analysis 
on the data obtained. This analysis will be interpreted 
for the sample programs and an approach given, albeit, not 
a statistical approach, for an interpretation for an 
arbitrary program.
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5-2 EXPERIMENTAL PROBLEM DEFINITION

The problem used in this experiment# the text 
reformatter problem# discussed in Goodenough and Gerhart's 
paper was slightly modified. The modifications were to 
insure that the programs are subroutines with a standard 
input and output format and to make the program slightly 
easier to automatically verify. The specifications for 
this program are included in Appendix B.

5.3 RESULTS OF EXPERIMENT

Programs were obtained as discussed above and wen- 
tested to see which test cases discovered the known errors. 
In addition# any additional errors that were found were 
added to the list of known errors. There were several 
errors of this type# partly due to voluntary method of 
having the programs written. Minor insignificant#
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annoying errors were corrected before running the 
experiment; for example* one program asked for the maximum 
number of characters before each test case. The 
cause-effect test set was developed in section "4.1 Text 
reformatter example” on page 74; the other test sets were 
developed based on the structure -of the programs. The 
results are shown in Figure 23 on page 111 and Figure 22 
on page 110.

The experiment was performed by two people* both 
using the same specifications; they are referred to in the 
figures as Experiment 1 and Experiment 2. As can be seen 
in Figure 24 on page 112 the metric CA is* again* monotone 
nondecreasing versus the percent of errors discovered.

5.4 DEVELOPING A MODEL

The purpose of developing a model* in this case* is 
to obtain a statistical base to make intuitive arguments. 
It is not to develop a pure mathematical model. There are
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Test Cases

1,2 1 2,11 1-3,5,8,10, 
11,13-15

1-16

Statement
Coverage

1 1 1 1

Branch
Coverage

2/3 1 1 1

Multiple
Condition
Coverage

2/3 1 1 1

Path
Testing

2/10*
15/18

3/10* 15/18 
15/18

8/10*
15/18

Cause-Effect 
Graphing

2/3 3/13 8/13 1

Total CA 2.63 3.48 4.44 4.65
Figure 22. Completeness Metric for Experiment 1

two reasons for this; first, the amount of data available 
is not sufficient, at this time, to develop a theoretical 
model and, second, it has not been shown that all the 
required statistical assumptions are true. For example, 
it has not been shown that the form of the model is linear, 
although, intuitively that is a reasonable assumption; it 
has not been shown that the regressor variables are
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Test Cases
1,2*11,13

15
1*2,11,
13*15,6

1-13 1*3*5*6*22 
12-4,16

Statement
Coverage

1 1 1 .6

Branch 5/6* 19/24 5/6* 4/6*
Coverage 19/24 19/24 19/24

Multiple 5/6* 19/24 5/6* 4/6*
Condition
Condition

19/24 19/24 19/24

Path
Testing

3/9 4/9 7/9 1.0

Cause-Effect 
Graphing

5/13 6/13 1.0 7/13

Total CA 3.01 3.51 4.07 3.17
Figure 23. Completene ss Metric for Experiment 2

measured without error* although it is reasonable that
they have no or small errors. A simple linear regression 
model is used instead of a more sophisticated approach* 
such as* multiple variable regression or prime factor 
analysis due to the limited amount of data available and 
the desire to use a simplified statistical approach to make 
intuitive judgements.
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TEST CASES CA NUMBER OF TOTAL NUMBER
ERRORS FOUND OF ERRORS

Experiment 1
1,2 2.63 1 3
1,2,11 3.48 1 3
1-3,5,8,10,11 4.44 2 3

13-15
1-16 4.65 3 3
Experiment 2
1,2,11,13,15 3.01 1 2
1,2,11,13, 3.51 1 2

15,6
1-13 4.07 2 2
1,3,5,6 3.17 1 2

11-14,16

Figure 24. CA Versus Errors for Experiment

The first approach used was to test the composite 
metric, CA, for significance as a predictor of the percent 
of known errors found by using the Statistical Analysis 
System, SAS (SAS, 1982). The results show that the percent 
of errors can be predicted, for the programs studied, as 
shown in the following equation:

Error V* = .03 + .15 * CA =
= .03 + .15 * (C(Statement) + C (Branch) +

C (Multiple Condition) + C (Path) +
C (Cause - Effect) + C (Mutation))
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Unfortunately this model only accounts for 58% of the 
variation in the percent of errors found. That is 58% of 
the total variation is attributed to the fit rather than 
left to residual error.

The next approach used was multiple regression 
analysis. The model shown below was the result* with those 
coefficients whose Probability > |T| value is greater than 
.05 omitted* as not significant contributors to the error 
percent. The Probability > |T| is the probability that a 
+ statistic would obtain a greater absolute value than that 
observed given that the true parameter is zero. It is a 
generally accepted* statistical assumption that if this 
variable is greater than .05* the associated parameter 
estimate is not significant.

Error % = .92 * C (Statement) + .48 C (Path) + .05

This mcdel accounts for 75% of the variance* and from a 
mathematical standpoint is the best that can be developed 
using the method of linear regression.
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The model above is not intuitively appealing because 
it used only the metrics for statement and path testing. 
Since there is an imbedding relationship between 
C(Statement ) ,  C(Branch) and CCNultiple Condition) a model 
was developed to include this relationship by considering 
another variable:

i

(C Statement) + .2 * CCBranch) +.1 * +CCNultiple Condition)

The coefficients for CCBranch) and CCNultiple Condition) 
were selected in an arbitrary manner based on intuition 
and the desire to keep the total variable significants for 
the programs studied. This parameter was based on the 
intuitive concept that the set of tests cases that provides 
statement coverage is a subset of the set that provides 
branch coverages which in turn is a subset of the set that 
provides multiple condition coverage. This approach helps 
to alleviate the problem of counting CCNultiple Condition) 
as three Cthat is one for CCStatement)s one for CCBranch) 
and one for CCNultiple Condition)); although that is the 
approach we used by computing CA as the sum of all the C's. 
With the above example a CCNultiple Condition) of one would 
contribute 1.3. The model developeds as discussed abovef
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will account for 71% of trs variance* which is close enough 
to the maximum possible (75%) to give us confidence that 
it is a reasonable prediction.

The resulting equation* again with only those coefficients 
that are significant* for the programs studied* is as 
follows:

Error % = .61 * (CCStatement) + .2 * CCBranch) +
.1 *  CCMultiple Condition)) +
.46 * CCPath)

The SAS analysis used to develop this model is included 
in Appendix D.

5.5 RESULTS OBTAINED FROM THE MODEL

The model developed shows that it is possible to 
predict the percent of errors that will be found based on 
the completion metrics for individual testing approaches 
for the programs studied.
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Given an arbitrary program P and a set of test cases 
T, the technique developed can be used to compute the 
metric called "error percent". This metric should not be 
interpreted as the percent of errors that will be found; 
it should be interpreted as an indicator* for the person 
doing the testing* of the reliartive usefulness of the the 
test cases. For example* a metric of .6 does not mean 60 
percent of the errors will be found; it should be 
interpreted* that if test cases are added and the .6 does 
not significantly increase then perhaps an incorrect 
approach to adding test cases has been chosen. On the other 
hand* if by adding test cases* the .6 increases the person 
testing should feel that progress is being made. This 
interpretation is consistent with the literature on the 
components of the composite metric; one hundred percent 
statement coverage is considered better that fifty percent 
coverage* however* the number of errors left and therefor 
the program correctness cannot be determined from the 
statement metric.

The final model accounts for 71% of the variation* 
that is 29% is due to residual error and 71% is due to fit.

Chapter 5* An Experiment 116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Although there is not formal rule* statistically, 71% is 
good; it is reasonable that an increase in the number of 
data points will cause this to increase slightly. In fact* 
as data points were added during the development of this 
dissertation* the amount of variation due to fit* 
generally increased. This percent is also called 
coefficient of determination.
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CHAPTER 6, SUMMARY AND CONCLUSIONS

6.1 SUMMARY

In this dissertation an approach to defining a test 
case metric is presented; this approach is demonstrated 
to be valid by means of examples taken from the literature. 
It can be used to help assess the relative usefulness of 
a collection of test cases. This was accomplished by first 
developing a metric to measure the completeness of test 
cases developed by a particular testing approach. A 
previously existing concept was expanded to permit this 
metric to have a continuous range. The second step was 
to develop a metric which is a composite of those developed 
for specific approaches. This composite metric was 
monotone^ nondecreasing with the percent of errors found. 
The third step was to use the components of the composite 
metric to statistically predict the percent of errors 
remaining* in the programs studied.
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In addition, items of lesser significance include the 
equivalence of the ENF and cause-effect graphing approach; 
the realization that most test methods can be considered 
as a subset of mutation and a classification of testing 
strategies.

6.2 FUTURE RESEARCH DIRECTIONS

The six methods of test case selection were chosen 
to allow both black box and white box testing, with an eye 
towards ease of implementation, or at least not an 
impossible implementation. In the future, addition 
testing approaches could be analyzed in this manner; for 
example, domain testing, weak mutation testing and error 
seeding could be directly evaluated using this 
methodology. Other testing approaches, such as symbolic 
execution, could also be evaluated using this approach, 
provided a completeness metric is developed; this does not 
seem complex, it just has not been done yet. Some thought
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has to be given to the definition of one hundred percent 
test coverage for symbolic execution.

Automated software tools are needed to pursue the 
metrics developed in this dissertation any further. In 
an ideal system* the prtfgiiammeir would submit his program 
and a set of test cases -with-'expecftferd results. The system 
would compute the individual completeness metrics and the 
composite metric; also available would be aides to 
increase the metric* for example* a list of paths not 
executed. As cited in Chapter 2* some software tools are 
available for specific approaches* however* no composite 
tools were found.

As indicated in Chapter 4* some of the values for 
completeness are based on approximations* mostly due to 
the clerical nature of running mutation exercises. For 
example* if ten test cases provided one hundred percent 
coverage* then it was assumed that any five test cases 
would provide fifty percent test coverage. This
assumption is intuitively correct* however* the results 
may be slightly off. With an automated system* this 
approximation would not be necessary. The selection and
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number of mutant programs was also limited by the manual 
time involved; in an automated system the number of mutants 
to be generated would be limited by the computer time 
available and would generally be much larger.

It has been assumed* and shown* for the examples 
analyzed* that the higher the CA metric* the more likely 
it is that all the known errors will be discovered. Again* 
this seems logical; however* a future study* with more than 
six test methods* could address the questions: How high
a CA value is enough? When should you stop to obtain a 
given confidence that all the errors are found?

It has also been assumed that an error is an error; 
that is* there is not a severity metric for errors. This 
is clearly not the case. For example* a formatting error 
on an airline report is much less severe than an airline 
controller program error that causes a plane to crash. 
It seems feasible that the severity of errors could be 
defined and then a test case could be given a weighted 
value that it would contribute to the completeness 
measure.
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The problem of the size of the domain of Sf in some 
cases is obvious. For example* with branch coverage* in 
other cases it is not obvious. In the case of mutation* 
one can develop a large number of mutants* insure the test 
cases differentiate them* and obtain a high completeness 
measure* however* if the'* mutants are not selected in an 
intelligent manner* this-may not be significant. That is 
to say* in the future* a measurement should be developed 
to measure the largeness or goodness of the set Sf.
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APPENDIX A> SUMMARY OF j-XAMPi.ES

Abbreviations used in this appendix:
PGM - Program
TR - Text Reformatter Program
QUAD - Quadratic Equation Program
TRI - Triangle Program
SORT - Sort Program
STM - Statement Coverage
BR - Branch Coverage
MCC - Multiple Condition Coverage
CE - Cause-Effect Graphing
MUT - Mutation Testing
PATH - Path Analysis
CA - Composite Completeness Metric
ER% - Percent of Known Errors Found
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PGM ER% STM BR MCC CE MUT PATH CA

TR . 4  1 r-(0• .91 .21 .19 inCM• 3.24
TR .6 1 1 .91 .29 .19 .33 3.77
TR .6 1 1 1 .29 . 19 .92 3.86
TR .6 1 1 .91 1 .97 .92 5.79
TR .8 I 1 .91 1 1 .92 5.82
TR .8 1 1 1 1 1 1 6

QUAD .71 1 .87 .75 1 .63 .7 4.95
QUAD .86 1 1 .83 1 • .81 .9 5.54
QUAD .86 1 1 1 1 1.0 1 6
QUAD .28 .57 . 4 4 .36 1 .36 . 4 3.13
QUAD .86 1 1 •. 92 1 .91 1 5.81

TRI .67 1 .5 .5 .67 .67 .5 3.84
TRI 1 1 1 1 1 .95 1 5.96
TRI 1 1 1 1 1 1 1 6
TRI .83 1 .75 .75 1 .6 .75 4.85
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PGM ER% STM BR MCC CE MUT PATH CA

SORT .57 1 .5 .5 . 16 .2 .25 2.61
SORT .71 1 1 1 .33 . A .5 4.22
SGRT .85 1 1 1 .33 .8 1 5. 12
SORT 1 1 1 1 .33 1 1 5.32
SORT .71 1 1 1 1 .4 .5 4.90
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APPENDIX B, SPECIFJACTIONS GIVEN TO SUBJECTS

B »1 TEXT REFORMATTER

The following is the specifications and examples 
given to subjects who wrote a text reformatting program:

Submit a program prior to it's being debugged and 
then after it is debugged, with some kind of indication 
of the errors that were found.

Assume the input is in a vector, called A, and the output 
is to be put into a vector called B. (that is, do not 
really print anything)

The problem can be stated as follows: Given an input
text having the following properties:
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II: It is a stream of characters* where the characters are 
classified as break and nonbreak characters. A break 
character is a 3 (blank)* $ (new line indicator)* or % 

(end-of-text indicator).

12: The final character in the text is %.

13: A word is a nonempty sequence of nonbreak characters.

14: A break is a sequence of one or more break characters.

(As a result* the input can be viewed as a sequence of 
words separated by breaks with possibly leading and 
trailing breaks* and ending with %.)

The program's output should be the same sequence cf 
words as in the input with the following properties:

01: A new line should start only between words and at the 
beginning of the output text* if any*

02: A break in the input is reduced to a single break
character in the output*
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03: As many words as possible should be placed on each 
line (i.e.r between successive $ characters); Any $ in 
the input should not result in a $ in the output unless 
the line is full (i.e. a $ in the input can be considered 
just like a 3 in the input)

04: No line may contain more than MAXPOS characters (words
and 3*s);

05: An oversize word (i.e.? a word containing more than
NAXPOS characters) should cause an error exit from the 
program (i.e.* put "ERROR" in B.);

Some examples might be helpful. MAXPOS is the maximum 
number of characters that can be set to a constant at the 
beginning of your program. For the following examples we 
will assume that MAXPOS is set to five.
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Example 1:

Input in A:
This3is33a$test%

Output that logically would be printed: 
this

i

is a 
test

Output in B:
$this$is3a$test

Example 2:

Input in A: 
a3bigword%

Output that logically would be printed: 
"ERROR"

Output in B:
"ERROR"
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Example 3;

Input in A:
3a3therea33are$$a31otaofaathing3$3A$B$C$D%

Output that logically would be printed:
there
are a
lot
of
thing
A B C
D

Output in B:
$there$are3a$lot$of$thing$A3B3C§D
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APPENDIX C* EQUIVALENCE EfcP AND C-E PROCEDURES

C.l SUMMARY OF APPROACH

The purpose of this appendix is to convince the reader 
that the cause-effect graph procedures and the Equivalent 
normal form (ENF) procedure can result in an identical set 
of test cases being developed. The significance of this 
equivalency is that the ENF algorithm is well documented 
and has been implemented for years in the hardware arena. 
The cause-effect graphing approach was developed in 1973* 
and although it appears to be a very logical approach to 
test case selection* it is not extensively used. This is 
partly due to the fact that once the graph is generated* 
there is not an easy-to-follow algorithm to generate the 
test cases. Since the ENF procedure is equivalent* the 
graph can be generated by way of the cause-effect method 
and then the test cases automatically produced by way of 
the ENF algorithm.
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In the future* a procedure could be written* or 
possibly picked up from a hardware system to produce the 
ENF test conditions. This was not done in this 
dissertation due to the lack of extremely complex programs 
to be analyzed. This equivalence is shown by procedurally 
stepping through a program of medium complexity* the text 
reformatter program* discussed in an earlier section.

C.2 CAUSE-EFFECT FOR TEXT REFORMATTER

As the first step in cause-effect graphing* all the 
causes (input conditions or system transformations) are 
identified and given a unique identifying number. Next, 
all effects (output conditions or changes in the system 
state) are identified and numbered. A graph is then 
generated by linking the causes to the effects with the 
proper logical relationships. The relationships used are 
AND* OR* identity (straight line) and NOT as well as 
various constraint symbols. A parenthesis is used to 
indicate the scope of the AND's and OR's. For example* in
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Figure 26 on page 136* input cv'ditions 3 OR 4 OR 8 must 
be true in order for condition 20 to be true.

As the size and ability tc work with the cause-effect 
graphs increases quickly as the program specifications 
become more complex; the graph generated for our sample 
problem will represent the processing of just one 
character. The processing of this character will be 
affected by the prior state of the program* for example* 
what characters if any* were processed prior to the current 
character. The input conditions (1-8) and output
conditions (90-94) are shown in Figure 25 on page 134.

The resulting cause-effect graph* developed from the 
Nassi-Shneiderman chart* is shown in Figure 26 on page 
136. The 0 and dotted line connecting input conditions 
1* 3* 4* and 8 indicate that one and only one of these
input conditions are possible at one time. Reading the 
graph indicates* for example* that if condition 3 is true 
(the character is a NL) then the intermediate condition 
20 is true. If condition 6 is also true (at least one 
character has previously been found and not printed)* then

Appendix C* Equivalence ENF and C-E procedures 133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Input Conditions:
1. CHARACTER IS NOT BL OR NL OR ET
2. BUFPOS = MAXPOS (word is too long)
3. CHARACTER IS NL
4. CHARACTER IS BL
5. BUFPOS + FILL<MAXP0S (word found will fit on

•• current line)
6. BUFPOS *  0 (at least one character 

found and not printed)
7. FILL *  0 (a word was already 

printed on this line)
8. CHARACTER IS ET
Output conditions:
90. NO OUTPUT (character put in buffer)
91. ALARM (word size too long)
92. BL AND BUFFER PRINTED
93. NL AND BUFFER PRINTED
94. NO OUTPUT (multiple or preceding

break character)
Figure 25. Input/output conditions for C-E graph

condition 21 is true (an intermediate state). If condition 
22 is also true (the previous word was already printed on 
the line and the current word will fit on the same line)> 
then output 92 is true. This means a BL will be printed 
followed by the word in the buffer.

The next step in using the cause-effect graphing 
methodology is to generate a limited entry decision table
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that represents the portions of the graph that makes each 
output condition true (one at a time). The method used 
is to sequentially select each effect to be true and to 
trace back through the graph to find all combinations of 
causes that will make the given effect true. Each 
combination of effects is recorded in the decision table 
as a row. Some possible combinations may be ignored as 
they are not all necessary to generate the test cases and 
there may be an unreasonable number or combinations. All 
possible combinations may in fact mask certain causes.
As an example; if four conditions are ORED together* it 
is only necessary to iterate four input conditions to make 
this true (each input true* while the others are false) 
instead of the fifteen possible combinations that make the 
output true.

The decision table for the text reformatter problem
is shown in Figure 27 on page 137. The rows represent the
condition of each cause or effect while the columns
represent a particular test case to be developed. A dash 
(-) indicates a don't care position. This decision table 
shows that we must develop fourteen test cases.
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*  20

9322

Figure 26 Cause-effect graph for text reformatter

The final step is to convert the columns of the 
decision table into test cases. This is accomplished in a 
trial-and-error manner by inspecting the decision table 
and generating a test case for each column. For example* 
for column 1* we need condition 1 to be true (character 
is not a break character) and condition 2 (word is too 

long) to ba falsa. The choice of the latter A as an input
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TEST CASE NUMBER

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1
2 0 1
3 - - 1 0 0 1 0 0 1 0 0 1 0 0
A - - 0 1 0 0 1 0 0 1 0 0 1 0
5 - - 1 1 1 - - - 1 1 1 0 0 0
6 - - 1 1 1 0 0 0 1 1 1 1 1 1
7 - - 1 1 1 - - - 0 0 0 1 1 1
8 • • • 0 0 1 0 0 1 0 0 1 0 0 1

90 1 0 0 0 0 0 0 0 0 0 0 0 0 0
91 0 1 0 0 0 0 0 0 0 0 0 0 0 0
92 0 0 1 1 1 0 0 0 0 0 0 0 0 0
93 0 0 0 0 0 0 0 0 1 1 1 1 1 1
94 0 0 0 0 0 1 1 1 0 0 0 0 0 0

Figure 27. Decision table for C-■E method

obviously satisfies these constraints. One choice for the 
fourteen test cases* as well as the expected output is 
shown in Figure 28 on page 138.

Appendix C, Equivalence ENF and C-E procedures 137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Test Input Expected output
case

1 A (Character A in BUFFER)
2 A * A * A * A ALARM MESSAGE
3 A*BL*B*NL*ET A BL B
4 A * BL * B * BL * ET A BL B
5 A*BL*B*ET A BL B
6 NL ,ET (NO OUTPUT)
7 BL ,ET (NO OUTPUT)
8 ET (NO OUTPUT)
9 A*NL*ET A

10 A*BL*ET A
11 A*ET A
1 2 A*A*BL*B,B*NL*ET AA

BB
13 A*A*BL*B*B*BL*ET AA

BB
14 A*A*BL*B*B*ET AA

BB

Figure 2 8 . Test cases for C-E graphing method

Cause-effect graphing is used as a procedural method 
to generate test cases. In addition* insight is gained 
into the problem to be solved by converting the 
specifications into the boolean graph. It can also assist 
in the discovery of incomplete and inconsistent 
specifications. Note that* generally* the test cases 
developed using the multiple condition coverage approach 
are not a subset of the cause-effect graph test cases. This
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situation is due to the fact ir. multiple condition
coverage all possible comcinstians cf condition outcomes 
must be covered (for example, NOT 5 AND NOT 7 in 
Figure 26 on page 136). This is not the case with the 
cause-effect graph algorithm.

C.3 EQUIVALENT NORMAL FORM FOR TEXT REFORMATTER

This method to generate a set of test cases is based 
on the equivalent normal form (ENF) of a hardware circuit. 
The ENF is developed by expressing the output of each gate( 
output conditions or intermediate states for software) as 
a function of the inputs and at the same time preserving 
the identity of each gate.
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The graph in Figure 26 on page 136 can be used as a 
basis for generating the ENF. The ENF's for our sample 
problem are shown in Figure 29 on page 141.

Each character (for example NOT 5[93] ) is called a 
term. Terms connected by ANDS< ia?e called literals. The 
next step is to test each -literal in an ENF for stuck at 
0 by assigning l's to all literals in the term containing 
it and making all other terms equal to zero. It is only 
necessary to test one literal per term using this method 
(testing more will result in duplicate tests). Applying 
these procedures we obtain the following result:

for ENF (91) - 11913=1 
2191 ] = 1

for ENF (90) - 1[90]=1
NOT 2190 ] = 1» 2[90 ] = 0
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ENF(91) 
ENF(VO) 
ENF(94)

ENF(92)

ENF(93)

Figure 29

Appendix C,

(1 AND 2)191] = 1191] AND 2[91]
(1 AND NOT 2)[90] = 1[90 ] AND NOT 2[90]
(NOT 6 AND 20)[94] =
(NOT 6 AND (3 OR 4 OR 8)(20])[94J =
(NOT 6[94] AND 3(20,941) OR
(NOT 6(94] AND 4(20,941) OR
(NOT 6(94] AND 8(20,941)
(22 AND 21)1921 =
((5 AND 7)[22 ] AND (6 AND 20)121 1)I 92 1 = 
5(22,921 AND 7(22,92] AND 
6(21,921 AND 20(21,92]=
(5(22,921 AND 7(22,92] AND 
6(21,921 AND 3(20,21,921 OR 
(5(22,921 AND 7(22,92] AND 
6(21,921 AND 4(20,21,92] OR 
(5(22,921 AND 7(22,921 AND 
6(21,921 AND 8(20,21,92]

= (NOT 22 AND 21)193] =
(NOT (5 OR 7)) [22,92] AND (6 AND 20)[21,92] 

= (NOT 5 1 22,92 ]OR NOT 7 (22,921) AND 6(21,92] 
AND (3 OR 4 OR 8 ) [20,21,92] =
NOT 5(22,921 AND 6(21,92] AND 3(20,21,92] OR
NOT 7(22,921 AND 6(21,92] AND 3(20,21,92] OR
NOT 5(22,921 AND 6(21,92] AND 4(20,21,92] OR
NOT 7(22,921 AND 6(21,92] AND 4(20,21,92] OR
NOT 5(22,92] AND 6(21,921 AND 8(20,21,92] OR
NOT 7(22,921 AND 6(21,92] AND 8(20,21,92]

ENF for example program
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for ENF C94)
- Literal 1 - NOT 6[94]=1, 6(941=0

3(20,941=1, 4120,941=0, 8[20,94]=0 
Literal 2 - 6I94]=0

4120,941=1, 3120,941=0, 8[20,941=0 
Literal 3 - 6(941=0

8120,941=1, 3[20,941=0, 4120,941=0

Similar expressions can be developed for ENF's 92 and 
93. A summary of the tests developed is shown in 
Figure 30 on page 143.

As the anticipated output for each ENF is 1 we see 
that these are exactly the same conditions that were 
generated using the cause-effect graphing method.

The ENF algorithm also requires that tests be 
generated for the stuck at 1 fault (a false output is 
expected) for all output conditions. This is not required
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Input Co r*di -ions
1 2 3 4 5 6 7 8

91 1 1
90 1 0

ENF 94 - - 1 - - 0 - -

94 - - - 1 - 0 - -

94 - - - - - 0 - 1
92 - - 0 0 7 1 1 1
92 - - 0 1 1 1 1 0
92 - - 1 0 1 1 1 0
93 - - 1 0 0 1 1 0
93 - - 1 0 1 1 0 0
93 - - 0 1 0 1 1 0
93 - - 0 1 1 1 0 0
93 - - 0 0 0 1 1 1
93 • 0 0 1 1 0 1

Figure 30. ENF conditions for text reformatter

in this case since we tactfully chose output that are 
mutually exclusive.
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APPENDIX D, STATISTICAL ANALYSIS

LIST OF DATA

OBS ERROR -Statement Branch Multiple
PERCENT Coverage Coverage Condition

Coverage
1 0.40 1.00 0.87 0.91
2 0.60 1.00 1.00 0.91
3 0.60 1.00 1.00 1.00
4 0.60 1.00 1.00 0.91
5 0.80 1.00 1.00 0.91
6 0.80 1.00 1.00 1.00
7 0.71 1.00 0.87 0.75
8 0.86 1.00 1.00 0.83
9 0.86 1.00 1.00 1.00

10 0.28 0.57 0.44 0.36
11 0.86 1.00 1.00 0.92
12 0.67 1.00 0.50 0.50
13 1.00 1.00 1.00 1.00
14 1.00 1.00 1.00 1.00
15 0.83 1.00 0.75 0.75
16 0.57 1.00 0.50 0.50
17 0.71 1.00 1.00 1.00
18 0.85 1.00 1.00 1.00
19 1.00 1.00 1.00 1.00
20 0.71 1.00 1.00 1.00
21 0.50 1.00 0.65 0.65
22 0.50 1.00 0.79 0.79
23 1.00 1.00 0.65 0.65
24 0.50 0.6 0.52 0.52
25 0.33 1.0 0.66 0.66
26 0.33 1.0 1.00 1.00
27 0.66 1.0 1.00 1.00
28 1.00 1.0 1.00 1.00
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LIST OF DftTfl. C S ^T IN U E D

IBS Cause MUTATION PATHS VARIABI
Effect
Graphing

TESTING EXECUTED TOTALS

1 0.21 0.19 0.25 3.44
2 0.29 0.19 0.33 3.77
3 0.29 0.19 0.42 3.86
A 1.00 0.97 0.92 5.79
5 1.00 1.00 0.92 5.82
6 1.00 1.00 1.00 6.00
7 1.00 0.63 0.70 4.95
8 1.00 0.81 0.90 5.54
9 1.00 1.00 1.00 6.00

10 1.00 0.36 0.40 3.13
11 1.00 0.91 1.00 5.81
12 0.67 0.67 0.50 3.84
13 1.00 0.95 1.00 5.96
14 1.00 1.00 1.00 6.00
15 1.00 0.60 0.75 4.85
16 0.16 0.20 0.25 2.61
17 0.33 0.40 0.50 4.22
18 0.33 0.80 1.00 5.12
19 0.33 1.00 1.00 5.32
20 1.00 0.40 0.50 4.90
21 0.38 0.00 0.33 3.01
22 0.49 0.00 0.44 3.51
23 1.00 0.00 0.77 4.07
24 0.53 0 1.00 3.17
25 0.15 0 0.16 2.63
26 0.23 0 0.25 3.48
27 0.61 0 0.83 4.44
28 1.00 0 0.65 4.65
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STATISTICS FOR CA

DEP VARIABLE: ERRORS ERROR PERCENT
SUM OF MEAN

SOURCE DF SQUARES SQUARE F VALUE
MODEL 1 0.754467 0.754467 36.228
ERROR 26 0.541458 0.020825
C TOTAL 2 7 1.295925
PROB > F 0.0001

ROOT MSE 0.144310 R-SQUARE 0.5822
DEP MEAN 0.697500 ADJ R-SQ 0.5661
C.V. 20.68956

PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETERS

INTERCEP 1 0.031398 0.113977 0.275
TOT 1 0.148152 0.024614 6.019

Appendix D> Statistical analysis
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PREDICTED VERSUS ACTUAL FOR CA

PREDICT STD ERR STD ERR STUDENTOBS ACTUAL VALUE PREDICT RESIDUAL RESIDUAL RESIDUAL
1 0.400000 0.541041 0.037676 -.141041 0.139305 -1.0122 0.600000 0.589931 0.032606 0.010069 0.140578 0.072
3 0.600000 0.603265 0.031446 -.003265 0.140842 -0.023
A 0.600000 0.889198 0.041930 -.289198 0.138084 -2.094
5 0.800000 0.893643 0.042493 -.093643 0.137912 -0.679
6 0.800000 0.920310 0.045979 -.120310 0.136789 -0.880
7 0.710000 0.764750 0.029472 -.054750 0.141268 -0.3888 0.860000 0.852160 0.037470 0.007840 0.139360 0.0569 0.860000 0.920310 0.045979 -.060310 0.136789 -0.441

10 0.280000 0.495114 0.043294 -.215114 0.137662 -1.56311 0.860000 0.892161 0.042305 -.032161 0.137970 -0.233
12 0.670000 0.600302 0.031694 0.069698 0.140786 0.49513 1.000 0.914384 0.045190 0.085616 0.137052 0.625
14 1.000 0.920310 0.045979 0.079690 0.136789 0.583
15 0.830000 0.749935 0.028630 0.080065 0.141441 0.56616 0.570000 0.418075 0.053842 0.151925 0.133889 1. 13517 0.710000 0.656599 0.028106 0.053401 0.141546 0.377
18 0.850000 0.789936 0.031299 0.060064 0.140875 0.426
19 1.000 0.819567 0.033986 0.180433 0.140251 1.287
20 0.710000 0.757343 0.029028 -.047343 0.141360 -0.335
21 0.500000 0.477336 0.045626 0.022664 0.136907 0.166
22 0.500000 0.551412 0.036508 -.051412 0.139615 -0.36823 1.000 0.634377 0.029219 0.365623 0.141321 2.58724 0.500000 0.501040 0.042534 -.001040 0.137899 -0.008
25 0.330000 0.421038 0.053418 -.091038 0.134059 -0.679
26 0.330000 0.546967 0.037003 -.216967 0.139485 -1.555
27 0.660000 0.689193 0.027307 -.029193 0.141703 -0.206
28 1.000 0.720305 0.027534 0.279695 0.141659 1.974
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STATISTICS FCZ INDIVID U A L  METHODS

DEP VARIABLE: ERRORS ERROR PERCENT

SOURCE DF
SUM OF 

SQUARES
MEAN

SQUARE F VALUE
MODEL 
ERROR 
C TOTAL 
PROB > F

4
23
27

0.924726
0.371199
1.295925
0.00001

0.231182
0.016139

14.324

ROOT MSE 
DEP MEAN 
C.V.

0.127040 
0.697500 
18.21357

R-SQUARE 
ADJ R-SQ

0.7136
0.6637

VARIABLE DF
PARAMETER
ESTIMATE

STANDARD
ERROR

T FOR HO: 
PARAMETERS PROB > |T|

INTERCEP
St,Br,MCC
CE
MUT
PATH

1
1
1
1
1

-0.431229 
0.615599 
0.135203 

-0.058904 
0.461587

0.223855
0.174480
0.091763
0.090538
0.127343

-1.926
3.528
1.473

-0.651
3.625

0.0665
0.0018
0.1542
0.5218
0.0014

Appendix D> Statistical analysis 149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

ACTUAL VERSUS PREDICTED FOR INDIVIDUAL C'S

PREDICT STD ERR STD ERR STUDENT
OBS ACTUAL VALUE PREDICT RESIDUAL RESIDUAL RESIDUAL

1 0.400000 0.480102 0.046896 -.080102 0.118067 -0.678
2 0.600000 0.543850 0.041259 0.056150 0.120153 0.467
3 0.600000 0.590934 0.039238 0.009066 0.120828 0.075
4 0.600000 0.866236 50.. 039555! ->.266236 0.120725 -2.205
5 0.800000 0.864469 0.040852 -.064469 0.120292 -0.536
6 0.800000 0.906936 0.040763 -.106936 0.120322 -0.889
7 0.710000 0.758859 0.036977 -.048859 0.121539 -0.402
8 0.860000 0.861504 0.035019 -.001504 0.122118 -0.012
9 0.860000 0.906936 0.040763 -.046936 0.120322 -0.390

10 0.280000 0.294630 0.103110 -.014630 0.074211 -0.197
11 0.860000 0.907313 0.038428 -.047313 0.121088 -0.391
12 0.670000 0.558624 0.046264 0.111376 0.118316 0.941
13 1.000 0.909881 0.039394 0.090119 0.120777 0.746
14 1.000 0.906936 0.040763 0.093064 0.120322 0.773
15 0.830000 0.768931 0.034362 0.061069 0.122304 0.499
16 0.570000 0.401958 0.051074 0.168042 0.116321 1.445
17 0.710000 0.620899 0.037183 0.089101 0.121476 0.733
18 0.850000 0.828131 0.064095 0.021869 0.109685 0. 199
19 1.000 0.816350 0.068865 0.183650 0.106755 1.720
20 0.710000 0.711485 0.051959 -.001485 0.115928 -0.013
21 0.500000 0.508113 0.039004 -.008113 0.120904 -0.067
22 0.500000 0.599615 0.038917 -.099615 0.120932 -0.824
23 1.000 0.795037 0.063912 0.204963 0.109792 1.867
24 0.500000 0.567408 0.106181 -.067408 0.069747 -0.966
25 0.330000 0.400393 0.050746 -.070393 0.116464 -0.604
26 0.330000 0.515543 0.047557 -.185543 0.117802 -1.575
27 0.660000 0.834641 0.065815 -.174641 0.108662 -1.607
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APPENDIX E, NASSI—SHNEIDERMAN CHART FOR TEXT REFO^MATTER

ALARM=FALSE
BUFPOS=0
FILL=0

INCHARACTER CM
__________________________  u i j . ______________________

CW=BL OR CW=NL OR CW=ET
YES NO

BUFPOS*0
YES NO

BUFPOS5
YES

-MAXPOS
NO

FILL+BUFPOS<MAXPOS BUFPOS =
AND FILL*0 BUFPOS +

YES NO ALARM= 1
TRUE

OUTCHARACTER OUTCHARACTER BUFFER
BL NL (BUFPOS)

CM
FILL=FILL+1 FILL=0

FOR K=1 TO BUFPOS
OUTCHARACTER
BUFFER(K)

FILL=FILL+BUFPOS
BUFP0S=0

DO UNTIL ALARM=TRUE OR CW=ET
END

Appendix E » Nassi-Shneiderman Chart for Text 
Reformatter 152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIOGRAPHY

Acree, A. T. Jr.; On Mutation* Ph.D. Dissertation* Georgia 
Institute of Technology* 1980.

Adrion* W. R.* Branstrad* M. A.* Cherniavsky J. C* 
Validation* Verification* and Testing of Computer 
Software, Computing Surveys. ACM* Vol. 14, No. 2, 
June 1982.

Alberts* D. S.* The Economics of Software Quality 
Assurance* Tutorial; Software Testing and 
Validation Technioues. IEEE* 1978.

Boehm* B. W. * McClean* R. K. and Urfrig D. B.* Some 
Experience with Automated Aids to the Design of 
Large-Scale Reliable Software* Tutorial: Software 
Testing and Validation Technigues* IEEE*1978.

Bibliography 153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Boehm, B. W . , The High Cost of Software, Tutorial:
SPftw^rg Testing and Validation Techniques, IEEE,
1978.

Budd, T. A., Mutation Analysis of Program Test Data, Ph.D 
Dissertation, Yale University, May 1980.

Chapin, N., New Format for Flowcharts, Software - Practice 
and Experience, Vol. A, 197A.

Chudleigh, M.; Software Reliability, Systems 
International, July 1982.

Clarke, L. A.; A System to Generate Test Data and 
Symbolically Execute Programs, IEEE Transactions 
on Software Engineering, Vol. SE-2, No. 3, 
September 1976.

Clarke, L. A., Hassell, J., Richardson D. J.; A Close Look 
at Domain Testing, IEEE Transactions on Software 
Engineering. Vol. SE-6, No. A, July 1982.

Bibliography 15A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

DeMillo? R. A.; Mutation Analysis as a Tool for Software 
Quality Assurance? Proceedings of COMPSAC 80? 
IEEE? 1980.

DeMillo? R. A.? Program Mutation: An Approach to Software
Testing? Report AD-A135775? Georgia Institute Of 
Technology? April 1983.

Deutsch? L. P.? An Interactive Program Verifier? Ph.D.
Dissertation? University of California? Berkeley? 
1973.

Duran? J. W. ? Wiorkowski? J. J.? Toward Models for 
Probabilistic Program Correctness? Proceeding of 
the Software Quality and Assurance Workshop. ACM? 
November 1978.

Elmendorf? W. R.; Cause-Effecc Graphs In Functional 
Testing? IBM Technical Report TR 00.2487? November 
1973. ACM Computing Surveys. Vol. 8? No. 3? 
September? 1976.

Bibliography 155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Fagan, M. E.; Design and .'ode Inspections to Reduce Errors 
in Program Develspment, Tutorial: Software Testing 
and Validation Techniques, IEEE, 1978, also 
published as, Design and Code Inspections and 
Process Control in the Development of Programs, 
IBM Technical Report TR00.2763, June 1976.

Fosdick, L. D., Osterweil, L. J.; Data Flow Analysis in 
Software Reliability, Computing Surveys. Vol. 8, 
No. 3, September 1976.

Friedman, A. D., Menon, P. R.; Fault Detection in Digital 
Circuits. Englewood, N.J., Prentice Hall, 1979.

Gabow, H. N.; Maheshwari, Osterweil, L. J.; On Two 
Problems in the Generation of Program Test Paths, 
IEEE Transactions On Software Engineering, SE-2, 
No. 3 September 1976.

Gillion, P., Why are Users Getting Untested Programs?, 
Computerworld ,Vol. XVII, No. 31, August 1983.

Bibliography 156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Glass, R. J.; Software Reliability Guidebook. Prentice

Hall 1979.

Goodenough, J. B. and Gerhart, S. L.» Toward a Theory of 
Test Data Selection, IEEE Transactions on Software 
Engineering, Vol.'SE-l, No. 2, June 1975, also in, 
Tutorial; Software Tesiting and Validation 
Techniques. IEEE, 1978.

Goodenough, J. B.; A Survey of Program Testing Issues, 
Chapter 9, Research Directions in Computer 
Science, The MIT Press, 1980.

Hansen, P. B.; Testing a Multiprogramming System, 
Tutorial: Software Testing and Validation
Techniques. IEEE, 1978.

Hiedler, W. , Benson, J., Meeson, J., Kerbel, A.; Pyster, 
A.; Software Testing Measures, Rome Air 
Development Center, Report RADC-TR-82-135, May 
1982.

Bibliography 157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Hogger, E. I., A Decision Table Approach to Reliable 
Software* IAEA/Westinghouse Conference on Software 
Reliability, 1977.

Howden, W. E.; Symbolic Testing and the DISSECT Symbolic 
Evaluation System, Tutorial r Softwalna Testing and 
Validation Techniques. IEEE, 1978.

Howden W. E.j A Survey of Static Analysis Methods, 
Tutorial? Software Testing and Validation 
Techniques, IEEE, 1978.

Howden, W. E.; Reliability of The Path Analysis Testing 
Strategy, IEEE Transactions on Software 
Engineering, Vol.SE-2, No. 3, September 1976, also 
in, Tutorial: Software Testing and Validation
Technioues, IEEE, 1978.

Howden, W. E.; Weak Mutation Testing and Completeness of 
Test Sets, IEEE Transactions on Software 
Engineering, Vol. SE-8, No. A, July 1982.

Bibliography 158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Huang, J. C. ; An Approac* to °rcgram Testing; Commuting 
Surveys, Vol. 7; 'r4o. 3; September 1975; also in; 
Tutorial; Software Testing and Validation 
Technigues; IEEE; 1978.

Kernighan; B. W.; Plauger; P. J.; The Elements of
Programning Stvle♦ McGraw - Hill; 1974.

Manna; Z., Waldinger, R.; The Logic of Computer 
Programming; IEEE Transactions on Software 
Engineering, Vol. SE-4, No. 3 May 1978.

McCracken; D. D.; A Simplified Guide to Fortran
Programming ,John Wiley; 1974.

Miller; E. F. Jr; Program Testing: Art Meets Theory;
Tutorial:___ Software Testing and Validation
Technigues, IEEE; 1978; also in Computer. July
1977.

Miller; E. F. Jr.; Program Testing Technology in the
1980's, Tutorial: Software Testing and Validation 
Technigues, IEEE, 1978

Bibliography 159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Miller E. F. Jr., Melton R. A.; Automated Generation of 
Testcase Datasets, Tutorial; Software Testing and 
Validation Techniques, IEEE, 1978.

Miller E. F. Jr., Paige M. R., Benson J. P., and Wisehart 
W. R.; Structural Techniques of Program Validation 
Tutorial; Software Testing and Validation 
Techniques, IEEE, 1978.

Mills, H. B., On the Statistical Validation of Computer 
Programs, FSC-72-6015, IBM, 1972.

Musa, J. D.; The Measurement and Management of Software 
Reliability, Proceeding of the IEEE. Vol. 68, No. 
9, September 1980.

Myers, G. J.J Software Reliability. Principles and 
Practices , Wiley - Interscience, 1976.

Neumann, P. G.; Some Computer-Related Disasters and Other 
Egregious Horrors, ACM SIGSOFT Software 
Engineering Notes, Vol. 10, No. 1, January 1985.

Bibliography 160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Osterweil* L. J.; A Proposal for an Integrated Testing
System for Computer Programs* University of 
Colorado* Technical Report* October 1976.

Osterweil L. J.* Fosdick* L. D.J DAVE-A Validation Error 
Detection and Documentation System for Fortran 
Programs* Tutorial; Software Testing and
Validation Techniques* IEEE* 1978.

Phoha* S.* A Quantifiable Methodology for Software
Testing: Using Path Analysis* Project 4130* The
MITRE Corp.* December 1981.

Probert* R. L.* Optimal Insertion of Software Probes in 
Well- Delimited Programs* IEEE Transactions on 
Software Engineering* Vol. SE-8, No. 1* January
1982.

Ramamoorthy* C. V.* Ho* S. F.; Testing Large Software with 
Automated Software Evaluation Systems* Tutorial; 
Software Testing and Validation Techniques. IEEE*
1978.

Bibliography 161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Ramamoorthy, C. V.» Ho, S.F.; Chen, W. T.J On the Automated 
Generation of Program Test Data, IEEE Transactions 
on Software Engineering, Vol. SE-2, No.A December
1979.

Ramamoorthy, C. V., Bastani, F.; Software Reliability - 
Status and Perspectives, IEEE Transactions on 
Software Engineering, Vol. SE-2, No. A, July 1982.

Reynolds, J. C.; Proving Program Correctness, Rome Air 
Development Center Report, RADC-TR-08-379, Vol. 
V, 1980.

SAS Institute Inc. SAS User's Guide: Statistics , 1982.

Shankar, K. S.; A Functional Approach to Model 
Verification, IEEE Transactions of Software 

Engineering. Vol. SE-8, No. 2, March 1982.

.Stickney, M. E.; An application of Graph Theory to Software 
Test Data Selection, Proceeding of the Software

Bibliography 162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Quality and Assurance Workshop» ACM, November
1978.

Tai, K.J Program Testing Complexity and Test Criteria, 
Transactions on Software Engineering. Vol. SE-6, 
No. 6, November 1980.

Walsh P. J.jAn Analysis of Test Case Selection, Phoenix 
Conference Proceedings, IEEE, March 1983.

Wang, J. S.; Measuring Completeness of a Test Case Library, 
IBM Technical Disclosure Bulletin, Vol. 23, No. 9 
February 1981.

White, L. H., Cohen E. I.; A Domain Strategy for Computer 
Programming Testing, IEEE Transactions on Software 
Engineering, SE-6, May 1980.

Wilson, P. B., Building Quality into Software with 
Effective Testing, Small Systems World. August,
1983.

Bibliography 163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Yaacob, M. and Hartley M. G;* A Survey Of Microprocessor 
Reliability with an Illustrative Example* Int. J • 
Elec. Ena. Education. Vol. 18, Pg 159-174, 1981.

Bibliography 164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


