
www.manaraa.com

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1. The sign or “target” for pages apparently lacking from the document
photographed is “Missing Page(s)” . I f it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. I f
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method of “sectioning” the material has been followed. It is
customary to begin filming at the upper left hand comer of a large sheet and to
continue from left to right in equal sections with small overlaps. I f necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

University
Microfilms

International
300 N. Zeeb Road
Ann Arbor, Ml 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

8514636

Walsh, Patrick Joseph

A MEASURE OF TEST CASE COMPLETENESS

State University of New York at Binghamton Ph.D. 1985

University
Microfilms

International 300 N. Zeeb Road, Ann Arbor, Ml 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A MEASURE OF TEST CASE
COMPLETENESS

PATRICK JOSEPH WALSH
B.S.* Mathematics* The Pennsylvania State University*

1968
M.A.* Mathematics* The Pennsylvania State University*

1969
M.S.* Systems & Information Science* Syracuse University*

1976

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy from the
Watson School of Engineering* Applied Science*

and Technology in the Graduate School of
the State University of New York

at Binghamton
1985

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Accepted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy from the

T. J. Watson School of Engineering? Applied
Science? and Technology in the Graduate

School of the State University of
of New York at Binghamton

Department of Computer Science
T. J. Watson School of Engineering?
Applied Science? and Technology

\atywjtiz/lJ. Diaz-Herrera <r:J ff * n April 20? 1985
Department of Computer Science
T. J. Watson School of Engineering?
Applied Science? and Technology

Department of Computer Science
T. J. Watson School of Engineering?
Applied Science? and Technology

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I

(c) Copyright by Patrick Joseph Walsh 1985

Note: This thesis was written as part of an IBM work-study
program and IBM has rights in this material.

Permission to make a small number of copies for personal*
academic* study or research purposes is hereby granted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ACKNOWLEDGEMENTS

The author would like to thank his advisor* Dr. Joseph
Cornacchio* for his guidance* encouragement* and
suggestions for improving the readability of this
dissertation; and to Dr. Lawrence Larson and Dr. Jorge
Diaz-Herrera for their thorough reading of this
manuscript. The author also wishes to thank his wife
Cynthia and daughters* Meghan and Shannon for their
patience during this endeavor. Finally the author wishes
to thank his parents for placing emphasis on education.

Acknowledgements iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ABSTRACT

When testing a computer program? it is not usually
clear when to stop testing and? at the same time? have some
level of assurance that the program is correct. This
decision? as well as the selection of test cases? is often
done in an ad hoc manner.

This dissertation addresses a technique that can be
used to gain assurance that the quality of test cases are
improving. First? a metric is developed to measure the
effectiveness of a set of test cases developed using a
particular testing approach? such as statement coverage?
branch coverage? multiple condition coverage? path
testing? cause-effect graphing and mutation analysis. A
single measurement approach for test cases is developed?
regardless of the test approach used to generate the test
cases. This metric is used to evaluate both structural
and functional methods for generating test cases. Next?
a composite metric is constructed based on metrics
developed for the approaches that were evaluated. This
composite metric is shown? for the examples studied? to
increase as the number of errors discovered increases.

ABSTRACT v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

That is, by adding more test cases in a manner that
increases the composite metric* one is likely to find more
program errors than by adding test cases in a random
manner. In addition* by applying regression analysis*
some of the components of the composite metric are shown
to be a predictor of the reliability of the programs in
the sample studied.

It is also shown that the cause-effect graphing and
equivalent normal form approaches to test case generation
produce the same test cases. The equivalent normal form
method is more algorithmic and easier to implement.

ABSTRACT vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS

List of Illustrationsxi

Chapter 1* Introduction 1
1.1 Introduction .. 1
1.2 Summary of Findings 3
1.3 Introduction to testing 5

1.3.1 Definition'of terms 10
1.3.2 Why is testing necessary 15

Chapter 2> Classification of testing methods 19
2.1 Static testing .. 19
2.2 Dynamic Testing22

2.2.1 Statement coverage 23
2.2.2 Path testing26
2.2.3 Cause-effect graphing 32
2.2.4 Equivalent normal form34
2.2.5 Mutation analysis 38
2.2.6 Assertion Checking 42
2.2.7 Error seeding 45
2.2.8 Symbolic execution 46

Table of Contents vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3, Effectiveness and completeness 49
3.1 Problem description 49

3.1.1 Effectiveness definition 51
3.1.2 Statement coverage effectiveness 54
3.1.3 Completeness definition 57
3.1.4 Branch coverage completeness 58
3.1.5 Mutation analysis completeness 61
3.1.6 Error seeding completeness 61
3.1.7 Assertion completeness 62
3.1.8 Weak mutation completeness63

3.2 An extension of the completeness measure 64
3.3 Test Methods as a Subset of Mutation70

Chapter 4* Examples74
4.1 Text reformatter example 74
4.2 Triangle classification example 86
4.3 Quadratic equation example 91
4.4 Sort example .. 98
4.5 Discussion of examples 10x

Chapter 5> An Experiment 106
5.1 Overview of experimental approach 106
5.2 Experimental Problem Definition 108
5.3 Results of Experiment 108
5.4 Developing a Model 109

Table of Contents viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.5 Results Obtained from -:he Model 115

Chapter 6* summary and Conclusions 118
6.1 Summary .. 118
6.2 Future Research Directions 119

Appendix A, Summary of examples 123

Appendix B> Specifiactions given to subjects . . . 126
B.l Text Reformatter 126

Appendix C» Equivalence ENF and C-E procedures . . 131
C.l Summary of Approach " 131
C.2 Cause-effect for text reformatter 132
C.3 Equivalent normal form for text reformatter . 139

Appendix D* Statistical analysis 144

Appendix E* Nassi-Shneiderman Chart for Text
Reformatter 152

Bibliography 153

Acknowledgements iv

Table of Contents ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ABSTRACT

Table of Contents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OP ILLUSTRATIONS

igure 1. Classification of Reliability approaches 18
igure 2. Example of Cause-effect graph 35
igure 3. Decision Table for Cause-effect approach 36
igure 4. Effectiveness example53
igure 5. Statement coverage example 55
igure 6. Statement effectiveness example 56
igure 7. Text Reformatter Program 75
igure 8. Test cases for C-E approach79
igure 9. Paths for text reformatter 82
igure 10. Test cases versus sets for Text Reformatter 83
igure 11. Completeness Metric for Text Reformatter 84
igure 12. CA versus errors for Text Reformatter , 86
igure 13. Triangle classification program 87
igure 14. Completeness Metric for Triangle Program 90
igure 15. CA versus errors for triangle problem . 91
igure 16. Quadratic Equation Program 92
igure 17. Completeness metric for quadratic equation 96
igure 18. CA versus errors for quadratic program . 97
igure 19. Sort Program 99
igure 20. Completeness metric for sort program . 102
igure 21. CA versus errors for sort program . . 103

ist of Illustrations xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 22. Completeness Metric for Experiment 1 110
Figure 23. Completeness Metric for Experiment 2 111
Figure 24. CA Versus Errors for Experiment . . . 112
Figure 25. Input/output conditions for C-E graph 134
Figure 26. Cause-effect graph for text reformatter 136
Figure 27. Decision table for C-E method 137
Figure 28. Test cases for C-E graphing method . . 138
Figure 29. ENF for example program 141
Figure 30. ENF conditions for text reformatter 143

List of Illustrations xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 1* INTRODUCTION

X.l INTRODUCTION

A generalized metric is not available to measure the
completeness of collections of test cases. As will be
discussed later* individual methods of measurement are
available for specific testing approaches; however* no
overall measurement exists. The purpose of this
dissertation is to develop a metric that can be used to
assess the relative ability of test cases to uncover
errors. The metric developed* based on an expanded
completeness measure* can be used to evaluate any set of
test cases* regardless of the method used to generate the
test cases.

When testing a computer program* it is not usually
clear when to stop testing and* at the same time* have some
level of assurance that the program is correct. This
decision* as well as the selection of test cases* is often

Chapter 1* Introduction 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

done in an ad hoc manner. This paper will help toward
developing an answer to these questions.

Chapter 1 is an introduction to testing that defines
the terms to be used and explains why testing is necessary.
In Chapter 2 many of the most common testing approaches
are classified and described. This chapter is used as a
base for Chapter 3> in which the metric for measuring test
sets is developed. In Chapter A* the concepts developed
in Chapter 3 are implemented on four programs taken from
the literature. It is shown that for all examples in this
chapter* the higher the value of the derived metric* CA*
the greater the number of known errors that are discovered.
Chapter 5 verifies the results of the previous chapter by
evaluating programs that were written for this purpose*
instead of being taken from the literature. Also included
in this chapter is the development of a statistical model
to help convince us that the measurements taken are an
estimate of the percent of errors that will be found. In
Chapter 6* a summary of the results is given and idoas for
future research are discussed.

Chapter 1* Introduction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix A is simply a summary of the empirical data
discussed in Chapter A. The specifications given to the
subjects who wrote the programs discussed in Chapter 5 are
included in Appendix B. Appendix C shows the equivalence
of the cause-effect approach and the equivalent normal
form (ENF) approach for generating test cases. This is
significant due to the availability of algorithms to
implement the ENF methodology. Included in Appendix D are
the details of the statistical analysis discussed in
Chapter 5. Appendix E contains a Nassi-Shneiderman chart
for the text reformatter program discussed in Chapter 4.

1.2 SUMMARY OF FINDINGS

A summary of the major findings of this dissertation
follow:

i. The Cause-effect graphing approach is algorithmically
equivalent to the ENF procedure used in the testing of

Chapter 1> Introduction 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

circuits. The ENF approach is more algorithmic and easier
to use for large applications. This is discussed briefly
in section "2.2.4 Equivalent normal form" on page 34 and
explained by means of an illustrative example in "Appendix
C* Equivalence ENF and C-E procedures" on page 131.

ii. All test methods can
a uniform manner with a
discussed in section " 3.2
measure" on page 64.

be measured for completeness in
range from 0 to 1. This is
An extension of the completeness

iii. The mutation concept is a super set of all other
testing approaches that result in the building of test
cases. This point is covered in section " 3.3 Test Methods
as a Subset of Mutation" on page 70.

iv. There is a composite completeness measure* based on
various testing approaches* that is monotone nondecreasing
with the number of errors discovered. This is shown
throughout "Chapter 4* Examples" on page 74 and summarized
in section "4.5 Discussion of examples" on page 101.

Chapter 1* Introduction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

v. The components of thi composite completeness metric can
be used to predict the reliability of a program. This is
discussed throughout Chapter 5 and summarized in " 5.5
Results Obtained from the Model" on page 115.

Other contributions of lesser significance include
the classification of testing methods shown in Figure 1
on page 18. A clear and simple classification scheme had
not been previously developed.

1.3 INTRODUCTION TO TESTING

A survey of the literature (Myers, 1976; Miller,
1978; Glass, 1979; Wilson, 1983) reveals that between 40%
and 75% of a program's life cycle cost is attributed to
testing, retesting and error analysis activities. It is
worth noting that only 5% of the software literature is
devoted to testing (Gillion, 1983), a sign that this aspect
of Computer Science is not as well understood as other
areas. A justification for further research into the area

Chapter 1, Introduction 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

can be seen by realizing that a 10% savings in test time
would result in a $500 million saving per year (based on
500*000 programmers* a 40% average life cycle effort for
testing and a $25*000 average salary). This does not
include any saving based on using less computer time and
the cost savings by having software (available earlier.

The problems of unreliable software dates back to the
first complex hardware and software installation* the SAGE
System of the early fifties. The Air Force spent
approximately ten billion dollars on the SAGE system but
could only obtain a mean time to failure rate of about two
hours. Almost all their failures (94%) were caused by
software problems* 1% by hardware problems and 5% by
operator error. In France seventy two meteorological
balloons were incorrectly blown up due to a software error
(Myers* 1976) and in 1962 the first space probe to Venus
was aborted due to an error in one line of code in the on
board computer (Manna and Waldinger* 1978). Recently the
first manned space shuttle was delayed due to a software
malfunction. These are examples of some of the problems
that could have been avoided if the software had been
properly tested. There is a list compiled of about twenty

Chapter 1* Introduction 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

five serious problems caused by errors in software
(Neumann# 1985)# including three recent plane crashes.

There are several approaches used to increase the
reliability of software. The first involves what is
generally referred to as testing (an exact definition will
be given later). The second is formal program proving
techniques. A third approach to increase the reliability
of software is a collection of design# analysis and
management techniques that are applied# for the most part#
prior to the end of the coding phase. Testing and program
proving# on the other hand# are applied most often after
a set of operational code is produced. There is a
historical differentiation between design and code#
however# some recent innovations# such as a detailed
design using decision tables# that can be compiled into
operational code can cause confusion on which phase one
is in and# therefore# which tool to use. For the purposes
of this dissertation# operational code is that document
which a programmer will normally use to solve operational
problems. For example# if one writes a decision table that
is compiled into assembler language# and the assembler
language is normally used to solve problems# then the

Chapter 1# Introduction 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

assembler code would be considered the operational code;
if the decision table document is normally used to solve
problems* then it would be considered the operational
code. Although this is not a precise definition* it is
developed enough for the concepts to be clear.

It is clear that a large percentage of errors are
introduced in the design phase of a project* 80% is one
estimate (Alberts* 1978)* so it is not surprising that a
number of design methods influence the reliability of
software. Top down development (Alberts* 1978)*
considering testing in the design phase by making
provisions for software monitors (Hansen* 1978);
restricting programming language facilities to increase
the possibility of later showing that programs perform*
as specified (Reynolds* 1980); generating a set of
programming standards; decision tables (Hogger* 1977) are
several of the methods that are likely to increase the
reliability of the end product. For the most part their
influence* although intuitively justified is intangible
and has not been measured. During the coding phase factors
that influence the end reliability are the use of higher
level languages (Boehm* 1978) structured programming*

Chapter 1, Introduction 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

design and code inspections (Fagan, 1978), and Nassi
Shneiderman charts (Chapir; L>74). " A comprehensive list
(Glass, 1979; Myers, 1976) explains the methodologies that
can be used to increase reliability. They include modular
programming, change reviews, ' peer reviews, HIPO
documentation, preventive maintenance and many other
concepts.

Methods that increase the reliability of software,
such as, design walk-throughs, code inspections, and
structured programming, are often classified as static
testing or validation techniques. In addition, there are
a number of software tools (Boehm, McClean and Urfrig,
1978; Osterwiel, 1976; Ramamoorthy, and Ho, 1978; Howden,
1978) that statically analyze programs and report the
suspected errors. These potential errors typically
include output unit violations, subroutine calls with
incorrect parameters, and variables that are not
referenced. From one aspect, static error detection using
automated tools is an extension of the compiler functions.

One of the goals of discussing software testing and
program proving is to make the practicing programmer aware

Chapter 1, Introduction 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

of these tools and concepts. Today testing is done mostly
in an ad hoc manner based on the programmer's experience
and intuition pertaining to the portions of the program
that should be exercised. Too often testing is completed
when the programmer has a good feeling about his code or»
even worse, when the time allocated for testing is over.

1.3.1 Definition of terms

One of the problems in studying the software
reliability and testing literature is the sometimes
inconsistent definition and use of terms. It is common to
treat software reliability and software testing in an
informal manner without explicitly explaining the meaning
of each. The following definitions are attempt to
standardize the terms that are used in this paper:

Software testing, also referred to as testing, is the
process of collecting and interpreting evidence about a
program’s suitability for operational use (Goodenough,

Chapter 1, Introduction 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1980), not, as is comxonly assumed, a process of finding
and removing errors from a program.

Debugging is the process of locating and correcting a known
error in a program (Myers, 1976). It is related to
testing, since during the testing process, errors are
discovered and must be corrected; however, no debugging
tools or technigues are covered in this paper.

Program verification is the idea that one can state the
intended effect of a program in a precise way that is not
another program, and then prove rigorously that the
program does (or does not) conform to this specification
(Deutsch, 1973).

Software reliability is the probability that a software
fault which causes a deviation from the reguired output
by more than specified tolerances, in a specified
environment, does not occur during a specified exposure
period (Ramamoorthy and Bastani, 1982). It should be
pointed out, that although testing is not a poor method
of increasing software reliability, design tools and
programming standards, also have a major effect on

Chapter 1, Introduction 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

software reliability. Also note that the age of the
software is not specifically mentioned. A program that
satisfies this criteria is said tc be reliable.

Correctness or program correctness is satisfaction that a
program's output meets specifications* independent of its
use of computing resources* when operating under permitted
conditions (Goodenough* 1980). The basis of the theory
of testing (Goodenough and Gerhart* 1975) include several
important definitions:

A program P is said to be completely correct with respect
to f» the intended function* if and only if P computes only
the correct values of f from arguments of f and is
undefined for arguments outside the domain of f. This
definition (Shankar* 1982) is a little more formal than
Goodenough's correctness definition* however* a program
is completely correct (Shankar's definition) if and only
if it is correct (Goodenough's definition). Shankar also
defines sufficient correctness if P computes values for
arguments not belonging to the domain of f. It is
important to note that a program may be correct and not
reliable (for example an input parameter outside of

Chapter 1* Introduction 12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

permitted condition may result in a program fault) or
reliable and not correct (for example the particular input
parameter that will cause a fault is never run).

Robustness is the property of continuing to do something
reasonable in the presence of unforeseen environmental
changes (Chudleigh, 1982).

A set of inputs T is an ideal test for program P, relative
to specification Ft if the correct performance of P on T
implies the program is correct on its entire input space.

A set of inputs T is said to be a reliable test, if and
only if, its data selection criteria, C, ensures that every
test satisfying C succeeds or every test fails.
Reliability is really a measure of the data selection
criterion. Tests of correct programs are 100% reliable.

A test data criteria C, and tests T are said to be
complete, (T,C) if the data selection criteria, C, is used
in selecting a particular set of test data. A more
theoretical definition of complete (Howden, 1982) is as
follows: P is a program, F is a set of functions

Chapter 1, Introduction 13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

associated with P. M is a mapping such that for each
subset T of the domain P and each function f in F* M
defines a subset of the domain f. Assume for each function
f in F there is an associated set of functions S(f). Let
T be the set of tests for P. Then T is a complete set of
tests for P relative to F and [S(f): f in F].

The data selection criterion* C» is said to be valid if
and only if* for every error in the program there exists
a complete set of test data capable of revealing the error.
This means that for each error in a program it is possible
to select data that will uncover it* no guarantee is given
that that data will be selected.

A test is successful * that is the test instance succeeds*
if it produces normal program output when it is run. That
is for each test case if the expected output is equal to
the actual output then the test is successful* otherwise*
an error has been discovered.

It is then our goal to select a data selection
criterion* C* that is both reliable and valid. The primary
theoretical point of Goodenough's and Gerhart's paper is

Chapter 1* Introduction 14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

called the fundamental theorem of testing and can be stated
as follows: If there exists a consistent, reliable, valid
and complete criterion for test set selection, for a
program P and if a test set satisfying the criterion is
such that all test instances succeed, then the program is
correct (Adrion, Branstrad and Cherniavsky 1982).

1.3.2 Why is testing necessary

A question that should be asked is why not build
programs correctly in the first place; that is, so they
conform to the requirements and no rework is necessary.
Unfortunately, present state-of-the-art techniques do not
support that goal; although it is a worthwhile objective.
Since, as stated before, a large amount of time is devoted
to testing, it makes sense to develop some formal testing
methodologies. The most straightforward method of
insuring reliable software is to simply exercise the
program by generating all possible inputs, running these
inputs through the program, and comparing the computed

Chapter 1, Introduction 15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

results with the expected results. There are several
problems with this approach* first* an oracle is required
to determine the correct expected result. This is a
practical problem that should not be overlooked* however*
for the remainder of this paper the existence of such an
oracle is assumed. The second problem is that* except for
trivial programs* this method* referred to as exhaustive
testing* is too time consuming to even consider. For
example a simple 10 element sort* with the domain limited
to the digits 0 tp 9 would take 100 years to complete an
exhaustive test assuming each test takes one second to
execute. It would clearly be unacceptable to wait 100 years
to guarantee 100% reliability. Test cases must be a subset
of the exhaustive set picked in an intelligent manner to
convince us that the software under test is reliable or
the converse.

There are two classifications of program testing
static and dynamic. In static testing (or more accurately
static analysis) program execution is not required* while
with dynamic testing* the program or part of it* is
executed and the output is either automatically or
manually compared with the anticipated results. Dynamic

Chapter 1* Introduction 16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

testing methods can k. clc^.>ified as those based on
coverage criteria and those based on other measures.
Coverage can be based on characteristics of the internal
program structure (white or glass box testing) or those
based on the functions provided (black box testing). Black
box testing and white box testing methods can be combined
in what is called grey box testing. Figure 1 on page 18
shows these classifications. This classification is
slightly artificial; for example; weak mutation testing;
a subset of mutation testing could also be considered a
superset of branch testing. Also; symbolic execution
could be considered a type of program proving. It should
also be noted that the dynamic methods not based on
coverage involve two steps. First the assertions are
inserted or the mutant programs are developed; and second
the test cases are developed; possibly using a coverage
based model.

Chapter lf Introduction 17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Reliability

Methods used prior
to the completion
of the coding phase

Testing

Static

Methods used after
the completion of
the coding phase

Program
proving

Dynamic

Based on
internal
structure

Coverage
based

Based on
functions

Not coverage
based

* Assertions
* Mutation
* Weak Mutation
* Error seeding
* Symbolic

execution
* Statement
* Branch
* Path

* Domain

* ENF
* Cause-effect

Figure 1 Classification of Reliability approaches

Chapter 1, Introduction 18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2/ CLASSIFICATION OF TESTING METHODS

2.1 STATIC TESTING

A number of errors, or possible errors in program
construction can be discovered by having another program
analyze the subject program. The basic approach to static
analysis is to define these constraints and then write the
programs that report violations. A common analysis
involves the detection of variables that are referenced
before they are initialized/ or variables that are set and
then never again used. Although/ in the strictest sense
these are not considered errors/ their presence is an
indicator of a potential problem. Due to the possibility
of different paths leading to a single reference type
instruction/ the check to see if the variable has been
initialized is not trivial (it may be initialized on
several different paths). Algorithms have been developed
to solve this problem (Fosdick and Osterweil/ 1976)/
referred to as the live variable problem. Static analysis

Chapter 2/ Classification of testing methods 19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

of this kind is based on first analyzing the subject
program to generate a data flow graph. This graph (it can
be assumed that a graph is generated for each variable)
shows all the statements where the variable is initialized
or referenced. Based on the program's control structure
it can then be determined if any rules may be violated.
There may be a path leading to a statement that references
a variable that has not been initialized on the path. This
may or may not be an error; perhaps the path is not
logically possible. These? therefore? have to be flagged
as possible errors using pure static analysis techniques?
since the instructions are not executed so no
determination can be made as to the logical possibility
of executing that path. Other conditions may also be
include in a static checker. For example division by a
constant of zero? loops with no imbedded change in the loop
variable? that is a type of infinite loop; and checking
for coding standards.

Static analysis is actually an extension of the
compiler's error checking capability? for example most
compilers will flag any use of a variable that is not
defined. Static analysis techniques can flag the possible

Chapter 2? Classification of testing methods 20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

use of a variable that is nov initialized. Since the cost
of running a static analyzer is relatively cheap* more of
these functions will be built into future compilers.

In summary* static testing has the potential to
detect a wide variety of errors that do not involve
computational algorithms* the tools are easy to use and
are relatively inexpensive to run. Another advantage of
the static approach is the source of the error is usually
also found. Many systems have been written to perform
static checking* mostly for Fortran programs* sixteen
operational tools are listed (Hiedler* et al.* 1982). The
DAVE system (Osterweil* 1978; Fosdick and Osterwiel* 1976)
ard the SQLAB system (Phoha* 1981) both incorporate static
checking as part of their test tools. There have been
articles published (Howden* 1978) that cover an
introduction to static analysis.

Chapter 2* Classification of testing methods 21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2 DYNAMIC TESTING

Dynamic testing requires that the program or part of
it be executed in one form or another. This is usually
accomplished by executing i the program via test cases*
which are selected based on criteria for the approach being
used. All of these approaches lead to the development of
a set of test cases that* based on their individual
criteria* provide some assurance that the program is being
properly exercised and is therefore more reliable.
Several comparisons of their relative usefulness have been
published and will be discussed later* however no overall
metric to measure the reliability gained by a given set
of test cases has been developed. The statement coverage
criteria* branch coverage* multiple condition coverage and
the path criteria are covered. Also included are the
dynamic methods of cause - effect graphing* mutation
analysis* and error seeding.

Chapter 2, Classification of testing methods 22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2.1 Statement coverage;

One method of selecting a subset of the exhaustive
set of possible inputs is to select them in a manner that
will assure that all instructions are executed at least
once. This is referred to as statement coverage. Although,
this is a rather weak condition, it is certainly required,
for unless there are instructions in the program that can
never be logically#executed (a problem in itself), one can
have no confidence that the instructions that are not
executed are correct. A slightly stronger selection
requirement called branch coverage requires that in
addition to all statements being executed at least once,
every branch direction must be traversed at least once.
The branch coverage condition is stronger than statement
coverage because additional test cases will be required
to exercise the branch directions that do not result in
any unique instructions being executed. For example a
false branch that simply branches around the first
instruction along the true path.

Chapter 2, Classification of testing methods 23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In order to determine if a given set of test cases
satisfy the statement or branch coverage criteria software
or hardware probes must be inserted into the system. The
first step in inserting software probes is to generate a
control graph (decision to decision path) of the program*
and then inserting counters after each leg of all branch
instructions. After the test cases are executed the
counters should be displayed and all zero value counters
used to develop additional test cases. There is not an
algorithm that can be generally used to determine the input
required to exercise a specific branch. This problem has
been solved for some specific cases (Huang* 1978). More
efficient* in some cases* algorithms have been developed
to minimize the number of software probes required
(Probert, 1982). This reduces one of the concerns with
software probes* the added execution time spent updating
them and the possibility of that delay hiding a timing
error. This is especially a potential problem when workinn
with real time programs. The PROBE system (Probert* 1982)
is an example of a implementation of these ideas. An
article on how to insert software probes (Wang* 1981) has
been written.

Chapter 2* Classification of testing methods 24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Hardware probes can be developed along the same
lines. They are more expensive; however* the problems
encountered by changing the program's timing are avoided.
Branch coverage is sometimes used as a trivial path
coverage when it is too difficult to develop the stronger
path cover. An example of this is a- system developed to
test some Motorola 6800 microprocessor programs (Yaccob
and Hartley* 1981).

Statement coverage has been defined (Miller* 1977)
as Cl coverage* and branch coverage as C2 coverage* CO
coverage is that based entirely on the programmer's
intuition. An additional criterion called multiple
condition coverage (Myers* 1976) requires branch coverage
plus enough test cases to cover all possible combinations
of condition outcomes in any direction. Multiple condition
coverage is stronger than branch coverage when compound
decisions are found in the program.

Chapter 2* Classification of testing methods 25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2,2.2 Path testing

Path Testing requires that each path through the
program be exercised by at least one *cest case. There are
three major problems with this requirement; first some
paths may be logically impossible to generate a test case
to execute; second; some paths may be generated that are
never possible to execute in practice (these are called
infeasible) third; generally the number of possible paths
is very large. This is due to the fact that unique paths
are generated for loop iteration; that is traversing a
particular loop 100 times is a different path then
traversing it 101 times. In the path testing approach the
paths are usually divided into a finite and manageable
number of classes with at least one test case generated
from each class. In an unabridged form the path testing
criteria is at least as strong as the branch coverage
criteria. Path testing; even with the unrealistic
assumption that every path in a program is tested does not
detect all errors (Howden; 1973). It is shown that; for
some published programs; 100% path testing does uncover a
majority of the errors.

Chapter 2 , Classification of testing methods 2 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Some systems have been written that address the
generation of test cases to exercise individual paths. The
DAVE system (Clark* 1976) will attempt to generate data
for a given path; however* the path (decision to decision
graph) must be available and passed to the system. In order
to determine the data to exercise a path its input
constraints must be linear (since* in general it is
impossible to find the input that causes a particular
instruction* and therefore path to be executed). This
system has the unique feature that symbolic execution is
used to execute the path. The concept of symbolic execution
is explained in "2.2.8 Symbolic execution" on page 46.
The resulting set of equations is then solved* if possible*
to determine the required input. Variable references are
not allowed since they are difficult to symbolically
execute.

The CASE6EN system (Ramamoorthy* Ho and Chen* 1979)
operates very similar to the DAVE system* the paths are
generated by some other means and then symbolically
evaluated to find the proper inputs. A method of array
reference is proposed to postpone the symbolic evaluation

Chapter 2* Classification of testing methods 27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

of a variable array reference until test data is generated.
The RSVP system (Miller* Paige and Benson* 1978) is
implemented using a tree representing the iteration of a
program* the decision to decision paths are then printed
as an aid to the person doing the testing.

A backtracking technique (Miller and Melton* 1978)*
I

instead of symbolic execution* is sometimes used to
generate a test case for each path once the directed graph
of the program flow is generated. A disadvantage of this
method is that manual intervention may be necessary when
iteration is involved (which is the case with most
programs).

It has been shown (Gabow* Maheshwari and Osterweil*
1976) that there is an efficient way* based on graph
theory* to find a path from one statement to another*
through a specific set of vertices or to show that no such
path exists. One of the problems listed earlier was that
some paths through the program* although semantically
possible can never be logically executed. These paths if
generated are useless and* in fact* cause effort to be used
to try to satisfy their constraints* an impossible task.

Chapter 2* Classification of testing methods 28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

One approach to this problem is to generate sets of
mutually unexecutable pairs of branches in a program (for
example number > 1 and number x number < number). These
pairs are referred to as impossible pairs and currently
have to be manually generated after analysis of the
programs structure. Gabow has shown that the IPP
(impossible pair constrained path) is NP complete. This
means that an analysis that computes paths and insures that
no impossible pairs are included in any path is exponential
in run time.

The primary problem when developing a path testing
strategy is is to determine the criteria for path selection
from the possibly infinite set of paths. A common approach
is to limit those paths involving loops to: zero* one and
the maximum number of iterations. It has been
statistically shown* (Duran and Wiorkowski* 1980) a
counter intuitive result* that insuring the testing of all
paths does not give a better assurance of program
correcrness. A concise summary of the path testing problem
is that it is enormously difficult and therefore can only
be treated with proper reserve (Yacco* 1981).

Chapter 2* Classification of testing methods 29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The basis for statement, branch and path testing is
a representation of the program structure called a
directed graph (digraph) or decision to decision paths.
Based on graph theory it is essentially a flowchart with
only decision portions of the program included. It is a
relatively simple procedure, given a program and the
semantic rules to generate a digraph. Cyclomatic trees
(Stickney, 1978), an improved version of a digraph can be
used to generate more efficient test cases and to ease the
placement of probes. Although it is possible to generate
a digraph for each program it is not possible to write a
general algorithm to generate the input that will cause a
specific instruction to be executed. This is of particular
concern in the methods that are based on coverage.

It has been shown (Tia, 1980) that statement, branch
and path testing are not sufficient to demonstrate a
program is correct. This is proven by showing the time
complexity for some simple programming constraints is much
higher than the time complexity of the above approaches.
Two new criteria are developed based on the domain
strategy, Cpath to test paths and Cprog to test programs.
Cpath basically requires the selection of test points from

Chapter 2, Classification of testing methods 30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

each section of the partition w ' the input space as well
as the boundary conditions. Cprog is an extension of this
concept. These two criteria are not meant to guarantee
the production of correct programs; however* their purpose
is to serve as a guide for test case selection.

t (*

A special type of path testing called domain testing
has been proposed (White and Cohen* 1980). Each path has
a domain* or set of program inputs that cause that path
to be executed. The domain testing concept is to select
test values that are near the boundary between different
paths. There are two types of possible program errors
involving the selection of paths. The first* selection
of the incorrect path is addressed by domain testing* the
second* the missing path cannot be discovered using this
approach. The underlying concept is that points near the
boundary of a path domain are more likely to generate
errors. Since this approach has the same drawbacks as
general path testing* for example the handling of loops*
it should not be used alone* but in conjunction with other
methods. Several measures of how serious a domain error
is were given by White and later expanded (Clarke* Hassell
and Richardson* 1982).

Chapter 2* Classification of testing methods 31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2.3 Cause-effect graphing

Another method used to generate a complete set of test
cases is cause-effect graphing (Elmendorf, 1976). All the
causes (input conditions or system transformations) are
identified and given a unique identifying number. Next,
all effects (output conditions or changes in the syistem
state) are identified and numbered. A graph is then
generated by linking the causes to the effects with the
proper logical relationships. The relationships used are
AND, OR, identity and NOT as well as various constraint
symbols. Parentheses are used to indicate the scope of the
AND's and OR*s.

As the size and ability to work with the cause-effect
graphs increases quickly as the program specifications
becomes more complex, the resulting cause-effect graph,
developed from the Nassi-Shneiderman charts become very
complex and difficult to generate. The next step in using
the cause-effect graphing methodology is to generate a
limited entry decision table that represents the portions
of the graph that makes each output condition true (one

Chapter 2, Classification of testing methods 32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

at a time). The method used is to sequentially select each
effect to be true and to trace back through the graph to
find all combinations of causes that will make the given
effect true. Each combination of effects is recorded in
the decision table as a row. Some possible combinations
may be ignored as they are not all necessary to generate
the test cases and there may be an unreasonable number of
combinations. All possible combinations may in fact mask
certain causes. As an example; if four conditions are ORed
together; it is only necessary to iterate four input
conditions to make this true (each input true; while the
others are false) instead of the fifteen possible
combinations that make the output true. The final step
is to convert the columns of the decision table into test
cases. This is accomplished in a trial-and-error manner
by inspecting the decision table and generating a test case
for each column.

For example; if input A and input B combine to form
condition C; and if condition C or Input D cause output
E; then the cause-effect diagram would be as shown in
Figure 2 on page 35. This would yield the limited entry
decision table shown in Figure 3 on page 36. Next the four

Chapter 2; Classification of testing methods 33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

rows of this table are used as attributes for the test
cases to be developed.

Cause-effect graphing is used as a procedural method
to generate test cases. In- addition* insight- is gained
into the problem to be solved by converting the
specifications into the Boolean graph. It can also assist
in the discovery of incomplete and inconsistent
specifications. At least three tools are available today
to automate the cause-effect graph process: TELDAP*
developed by IBM; CEGAR* developed by The Bank of America*
and one developed by Hitachi.

2.2.4 Equivalent normal form

Although hardware and software test generation
concepts and functions are completely different* certain
hardware concepts can be applied to software. One
advantage of software over hardware is that software

Chapter 2* Classification of testing methods 34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and

or

Figure 2 Example of Cause-effect graph

cannot develop any defects. The next method to generate
a set of test cases is based on the equivalent normal form
(FNF) of a hardware circuit (Friedman and Menon* 1979).
We can apply the hardware ENF procedure to software by
representing the program as a collection of hardware gates
as was done in the in the cause-effect approach. The ENF
is developed by expressing the output of each gate (output
conditions or intermediate states for software) as a
function of the inputs and at the same time preserving the
identity of each gate. For example* if the inputs to an
AND gate are A and B and the output is C» then the ENF for

C would be represented as follows: ENF(C)= (A AND B)[C].

Chapter 2* Classification of testing methods 35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 3 Decision Table for Cause-effect approach

If C and D are then inputs to an OR gate with output E»
then the ENF for E is as follows:

ENFCE)= (C OR D)[E] = ((A AND B)[C] OR D)[E].

Figure 3 is a graphical representation of this
relationship. Each character (for example, A[C]) is
called a term. Terms connected by ANDS are called
literals. The next step is to test each literal in an ENF

Chapter 2» Classification of testing methods 36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

for stuck at 0 by assigning lcs to all literals in the term
containing it and making air. other terms equal to zero.
It is only necessary to test one literal per term using
this method (testing more will result in duplicate tests).
The ENF algorithm also requires that tests be generated
for the stuck at 1 fault (a false output is expected) for
all output conditions.

By selecting the inputs and outputs* as in the
cause-effect graphing approach* one goes through the same
mechanical procedures as in cause-effect graphing* the
test case criteria generated is also identical. The
equivalent normal form approach is more algorithmic and
is* therefore* simpler to implement. Given the graph
generated in the cause-effect approach* it is possible to
write a program to implement the ENF algorithm and compute
the matrix that is used to generate test cases. In
summary* the ENF hardware approach has some merits as a
base for a software method due to the fact that ENF
algorithms and programs are available in the public
domain* while cause-effect programs would have to be
developed. Appendix C shows* for an example program* that

Chapter 2* Classification of testing methods 37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the cause-effect approach and the ENF approach generate
an identical set of test cases.

2.2.5 Mutation analysis

Mutation analysis is a method used to help the
programmer generating the test cases develop a set of
comprehensive test cases (Acree* 1980; DeMillo* 1980;
Budd * 1980; DeMillo* 1983) This approach calls program*
P» that is assumed to be correct or almost correct* to be
modified to form programs P1*P2»...PN» that are each very
similar to program P. These unique programs are called
mutants of F and are generated by changing a statement or
statements in P. Examples of the changes are: move the
decimal point* reverse table dimensions* delete an
instruction* substitute one variable name for another* and
reversing the direction of a move instruction.

Test cases for P are then generated either informally
or by using formal methods. The test cases are run against

Chapter 2* Classification of testing methods 38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

programs P,P1»P2,...PN and a..-..- of the P1,P2,... .PN mutant
programs that compute exactly the same results as P for
all the test cases are considered active mutants. The other
mutant programs differ from P by computing a different
result for at least one of the test cases and they are,
therefore, eliminated from further consideration. The next
step is to generate additional test cases, that when run
will differentiate between P and the set of active mutants.
This can be accomplished by analyzing the instructions
that wore changed in the active set, an analysis that
sometimes leads to the discovery of an error in the base
program P.

Some of the active mutants may be functionally
equivalent to the base program P (for example if the
instruction in program P is A=(-B)**2 and the instruction
in a mutant program is A=C+B)**2 then these two programs
are equivalent and the mutant can be deleted from the
active set). This process is repeated until all mutants
are inactive or declared equivalent. The basic philosophy
is that if the programs P1,P2,...PN are selected in an
intelligent manner then the resulting test cases for P will
be sufficient.

Chapter 2, Classification of testing methods 39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

It has been shown (Acree* 1980) that it is not
necessary to generate a mutant with more than one change
from the base program (for example it is not required to
change two instructions or make two modifications to one
instruction). This is known as the coupling effect. He

I .

has also shown that the number of mutants required is
proportional to the square of the number of lines of code.
Any serious implementation efforts would require an
automatic method of generating the mutant programs and
testing for equivalence.

Another important concept of the mutation analysis
paradigm is called the competent programmer hypothesis *
which states that the program* P* is correct or nearly
correct. If P is not correct then there is a high
probability that one of the programs* PI* P2*... PN is
correct. This hypothesis can be stated formally as
follows: (Budd* 1980).

A competent programmer* after giving the task
sufficient thought and pursuing the normal process
of programming and debugging* has probably written

Chapter 2* Classification of testing methods 40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

a program that is either correct or "almost"
correct, in that it differs from a correct program
in simple ways.

The purpose of this hypothesis or assumption is to assure
that a totally incorrect program is not shown, by way of
mutation analysis, to be correct. For example, given a
sort program and a set of test cases that separates the
sort program from all its mutants, nothing is shown if the
specifications of the program call for a square root
program. Practically this is not a problem if every test
case includes an expected result, as well as input
parameters.

The concept of weak mutation testing has been
developed (Howden, 1982). Mutation testing is modified
in two ways, first given program P with a component C, then
if one modifies C to form C' it is required that a test
be developed to differentiate C' from C. It is not
necessary for the test to differentiate P from P'. The
second difference is that in the construction of C* only
certain types of mutants are generated based on error
studies (for example what types of errors are most

Chapter 2, Classification of testing methods 41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

prevalent). They include wrong relation operator, o f f by
a constant, wrong coefficient, etc. There are two
advantages of using weak mutation testing (versus mutation
testing), there are fewer mutants due to the construction
of limited types and it may be easier to generate the
mutants. It is interesting that this method is similar
to domain testing for testing of arithmetic relations, it
is also similar, or a superset of, branch testing (a
trivial example would have C* equal to the decision
instruction).

2.2.6 Assertion Checking

Assertion checking involves the writing of special
instructions called assertions that are then evaluated as
the program is executed. These are usually tests for the
range or values of input variables, internal variables and
output variables. For example, a routine to compute the
square root of x and put in a variable SQRTx could have
an input assertion: ASSERT (X >= 0) and output assertion

Chapter 2, Classification of testing methods 42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ASSERT (SQRTx >= 0) and SQRTx * SQRTx = x). The use of
assertions is a two step process; first the assertion
statements are written and placed in the subject program;
second# the program is executed using test cases developed
using another method. These cases are independent of the
number and content of the assertions# although a bad choice
of test cases may cause the assertions to not be executed
or not executed with effective input. Although it is
possible that some simple assertions (for example ASSERT
X is not modified) could be checked with a static analyzer#
execution is usually required. It would be possible to
write the assertions after the coding phase is complete#
however# since a knowledge of the internal program logic
is required# it makes more sense to write the assertions
as the program code is written.

Assertion statements are usually additions to higher
level languages and include an error reporting or stopping
function when the conditions are not met. The languages
should have the capability of being compiled with or
without the assertion statements; in that way the extra
overhead of executing these checks and the extra storage
required could be avoided after the testing phase. Another

Chapter 2# Classification of testing methods A3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

approach would be to have a program switch to turn on and
off the assertion overhead as required in the compiled
program. This would save some of the execution time but
none of the space.

Assertions can also 'check the absolute variable
range; relative variable ranges (for example ASSERT x=y);
physical units of variables; loop invariant; maximum
number of loop iterations* etc. There are several
disadvantages of the assertion approach. First* there is
not a generally accepted methodology to decide where to
insert assertions* what they should check etc. It has been
shown (Hiedler et al.* 1982) that the number of assertions
is not related to the Halstead or McCabe metric for program
complexity. Programmer intuition and experience must be
used to decide what assertions to include. Like any other
instructions* these must be designed* tested* documented*
debugged* etc. The second difficulty with the assertion
approach is that it must be used in conjunction with
another method to generate test cases. A third
disadvantage is that in time dependent programs* the
function of executing the assertions may modify the
output.

Chapter 2* Classification of testing methods 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2.7 Enron seeding

Error seeding is discussed under the category of
dynamic testing because it requires the program under test
to be executed. This- subject could also have been
discussed in a section on reliability models; for it is,
in fact* a reliability model that is used directly in
dynamic testing (Mills* 1972). When a program is written
and ready to be tested* errors are purposely inserted into
the code by a party other than the tester. These seeded
errors are then found during the testing phase* as are
other indigenous errors. Based on the ratio of seeded to
indigenous errors found* a prediction can be made on the
remaining indigenous errors. One of the problems with this
simple model is the assumption that all errors have the
same probability of being found. Another related concern
is the assumption that seeded errors are inserted
randomly. Although this method appears rather intuitive
in practice* it has not been used often and* with a few
exceptions (Duran and Wiorkowski* 1978* Ramamoorthy and
Bastani* 1982* Musa* 1980) is not discussed in the
literature. In part* this is due to the seemingly

Chapter 2* Classification of testing methods 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

unnatural operation of inserting known errors into a
program that is supposed to be correct.

2.2.8 Symbolic execution

In all of the approaches discussed so far? except
assertion checking* actual test data is generated and used
as input to the program under test. A completely different
approach* symbolic execution* requires no input data.
Instead* the program is executed and whenever input is
required* a symbolic parameter is inserted. For example*
when the instruction READ DATA is encountered* DATA is
assigned a symbolic value* say A. Later* if the
instruction PUT DATA +1 INTO WORK is encountered* then WORK
is set to A +1. In the case of a conditional branch* the
parameters are kept in all directions* so a snapshot of
the symbolic execution may say* for example* WORK is A +1
if X >= 0 and WORK is A if X < 0. After this approach is
propagated through the program* the output can be
expressed via symbols and logical operations. The user

Chapter 2* Classification of testing methods 46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

is then expected to manually inspect the output and correct
any errors. For example:- in a ?rogram to solve a quadratic
equation for X* you would expect a symbolic output of the
form:

X = -b + SQRT (b2 ~ 4ac) and- X = -b - SORT fb^ - qac)
2a 2 a

S o * as can be seen; symbolic execution is not a
typical test method since test data is not needed; however*
it can be used in conjunction with other methods. A
successful looking symbolic execution does not guarantee
the program is reliable. In our quadratic equation
example* under some conditions 4ac may cause an overflow
and therefore* a program fault.

There are several problems with this approach.
First* the output may be extremely complex and hard to
manually recognize as the proper formula. For example*
is X = -b/2a + (b * b - 4ac)l/2 /2a correct in the example
above? The second problem is that of array references.
It becomes very complex due to the fact that a program
variable (an array element) may have a variable embedded*
A(l) would be acceptable but A(DATA) where DATA is

Chapter 2* Classification of testing methods 47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

calculated adds complexity very quickly. Some of these
problems have been partially solved as is discussed below.

An advantage of symbolic execution can be seen in
mathematical or algorithmic type applications. It is not
clear how these concepts: fwould apply to more general type
applications» say a data, base update program.

Chapter 2, Classification of testing methods 48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3, EFFECTIVENESS AND COMPLETENESS

3 .1 PROBLEM DESCRIPTION

The problem is to develop a uniform measure of test
case effectiveness. Some exist and are directly related
to a test method* for example:

Branch Coverage:
Statement Coverage:
Error Seeding:
Mutation:
Path:

% of Branches covered
% of Statements covered
% of Errors Found
Number of Mutants Left
% of Paths Exercised

It should be noted that these measures are defined from
zero percent to one hundred percent; however* the
relationship of one test method to the others is not well
understood from the above metrics. Some methods are not
easy to measure* for example:

Chapter 3* Effectiveness and Completeness 49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Assertions
Symbolic Execution

In this chapter a metric will be developed* with a
range of zero to one* that can. b'e* used to help one evaluate
the usefulness of various test cases. The significance
of this metric is that prior to its development in this
dissertation there was not a continuous measurement* as
is discussed below* a metric did exist that was either one
or zero. Another contribution is the idea that the metric
developed can be used to help one evaluate the relative
usefulness of a collection of test case sets. The approach
is developed in general and specifically applied to six
test approaches* however* it can be expanded to all test
methods. In this way* there exists* for each test method*
a common measurement scheme. For example* it will be
possible to compare a set of test cases developed using
statement coverage criteria with a set of test cases
developed using cause-effect graphing.

The purpose of running test cases is to help
demonstrate that a program is correct; that is* the output

Chapter 3* Effectiveness and Completeness 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

meets the specifications w*.- operating under permitted
conditions. The metric ci. .1 „ped helps us to make an
objective decision on whether the program is correct*
instead of the more subjective decisions that are usually
made.

In the following section we will define effectiveness
for functions* expand the definition to completeness of
programs and then expand these definitions to the range
of zero to one* instead of binary values zero or one.

3.1.1 Effectiveness definition

Given a function f» f: D->R» with

D = domain(f)

R = codomain(f)

Chapter 3* Effectiveness and Completeness 51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Range(f) is the set of all y in R such that
there exists an x in D with y = f(x)

Let £f be defined as all f* with domainCf*) = D

If T is a subset of D arrd SMF&as <a subset of £f then T is
effective for f relative 4poreSf» if and only if, T*0 and
for all f' in Sf, f*(T) = f(T)- implies f 1 =f.

This is based on the definition in the literature
(Howden, 1982) but restated to make it clearer for use in
this paper. This concept is the same as the equal
transformation concept in mathematical algebra.

For example, let f(X) = X 2
Sf = (X2 , X3 , 3X - 2)

The results of these functions can be seen in Figure 4 on
page 53.

Now we assume that the domain of Sf = (0,1,2,3) and let
T = (1). The T is not effective for f relative to Sf since
X 2 = X 3 over T and X 2 t X 3 over the entire domain of Sf
(for example for X = 2).

Chapter 3, Effectiveness and Completeness 52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Input
1 2 3

X 2
X 3
3X - 2

1 4 9
1 8 27
1 4 7

Figure 4. Effectiveness example

The test set T = (1, 2) is still not effective since
for f* = 3X - 2, f*Cl) = fCl) = 1 and f*C2) = fC2) = 4 and
there exists an X, say X = 3 such that f*(3) * f(3). The
test set T = (1, 2, 3) is effective for f relative to

Sf == (X2 , X 3 , 3X - 2);

however, since the set of all f* in Sf with f = f* over T
is empty. That is to say the test set (1 , 2, 3) will
differentiate X2 from X 3 and 3X - 2. It should be noted
that it may not be effective if another function is added
to Sf say:

(X2 -1) (X2 - 4) CX2 - 9) + X2

Chapter 3, Effectiveness and Completeness 53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

since f*(X) = f(X) for all X in T for this function and
there is an X, 0, where f(X)*f'(X)

3,1,2 Statement coverage effectiveness

Now for a little more complicated example* let f(x)
= PCx) where P is the program shown in Figure 5 on page
55. That is* the function f is that which is generated
by P» or f(x) = PCx) for all x in the domain of f. The
domain is (0*1*2*3) and the codomain of f is (0*1*2). This
means that for each x in (0*1*2*3) there exists a y in
(0*1*2)* such that P(x)=y.

That is* f is the function computed by the program P. Let

Sf = (Pl», P 2 ', . . . P 8 ')

where the Pn' are defined as the program formed by
replacing instruction N in program P with the following:

Chapter 3* Effectiveness and Completeness 54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 IF A = 1 GOTO 5
2 IF A = 2 GOTO 7
3 B = 0
A GOTO 8
5 B = 1
6 GOTO 8
7 B = A
8 END
Figure 5. Statement coverage example

n B='ABEND*;END

The results of these functions can be see in Figure 6 on
page 56.

Now the test set T = (1) is not effective for f
relative to Sf since for A = 1, the instructions of P
numbered 1, 5, 6 are executed so Pl'Cl), P5'C1), P6'C1)
are not equal to PCI); however P2fCl), P3*C1), PA'Cl),
P7'(l) and P8'(l) are all equal to PCI) and they are not
equal over the entire domain of Sf. If T = Cl, 2) then
PCx) = P3*Cx) = PA'Cx) for x = Cl, 2) and they are not
equal over the entire domain so T = Cl, 2) is also not
effective. It can be seen that T = CO, 1, 2)

Chapter 3, Effectiveness and Completeness 55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

B

Input
1 2 0

P 1 2 0
PI' ABEND 2 0
P 2 ' 1 ABEND ABEND
P3' 1 2 ABEND
P4» 1 2 ABEND
P5 * ABEND 2 ABEND
P6' ABEND 2 0
P7' 1 ABEND 0
P8' I ABEND 0

Figure 6. Statement effectiveness example

differentiates all the P* from P so the set T = (0* 1* 2)
is effective for f(x) = P(x) with respect to the P's. The
reason it is effective is that for any P' » P is not equal
to that P* over the entire set T. In fact* the 0 added
to T could be any real * 1* 2.

The function computed by P is

m = 1 f (m) = 1
m = 2 f(m) = 2
m * (1*2) f(m) = 0

Chapter 3* Effectiveness and Completeness 56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

It can be seen that any set T that is effective is also a
set that will result in statement coverage; any set that
is not effective will not result in statement coverage.
By defining Sf in this manner it can be seen that statement
coverage can be stated in terms of effectiveness. The
concept of completeness; defined in the next paragraph
will eliminate the awkwardness of dealing with functions
and programs that implement those functions.

3.1.3 Completeness definition

Given a program P; let

D = domainCP) » that is all x where PCx)
is defined

R = codomain(P)

RangeCP) is all y in R such that; there exists
an x in D such that y = PCx)

Let f be the function corresponding to P; that is f: D->R
and .for x in D; fCx) = PCx). We say f<->P. Given program;

Chapter 3; Effectiveness and Completeness 57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

P, and programs, £ = (PI, P2,...Pn) where each Pi has the
same domain, D) and functions, £ = (f1,f2,...fn) defined
by f<->P. Then if T is a subset of D, then T is complete
for P relative to £ if it is effective for f relative to
£ .

This is a simplification and restatement of Howden's
definition. In our previous example T = (0, 1, 2) is a
complete set of test cases for P relative to the P ’s. We
can say that T is complete relative to PI *,P2',...P8’ or
equivalently T provides statement coverage.

3.1.4 Branch coverage completeness

Again if f(x) = PCx), let the set of P' be formed such
that for each branch N in P there are two P ’s. One, P n ’,
that will result in a different output (from P) when branch
N is taken (and the same output when branch N is not
taken), and one, Pn” , that will result in a different

Chapter 3, Effectiveness and Completeness 58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

output (from P) when branch N is not taken (and the same
output when branch N is taken).

for example if P is:
1 B = 0
2 IF A = 1 GOTO 4
3 B = 1
4 END

We can define P ' as:
1 B = 0
2 IF A = 1 THEN

B = ABEND
3 B = 1
A END

and P " as:
1 B = 0
2 IF NOT (A=1) THEN

B = ABEND
3 IF (A=1) GOTO 5
4 B = 1
5 END

The functions defined area as follows:
P P * p "

A B A B A B
1 0 1 ABEND I 0

*1 1 *1 1 *1 ABEND

So if T = (0)* we have
P(0) = 1
P*(0) = 1
P ” (0) = ABEND

Chapter 3, Effectiveness and Completeness 59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and since P'CO) = PC0)» T = (0) is not complete. T = (1)
is also not complete since

PCI) = 0

P'Cl) = ABEND
P* 'Cl) = 0

that is P'*C1) = P C D * The test set T = C-0» 1) is complete

PCO) = 1
P'CO) = 1

P " (0) = ABEND

PCI) = 0

P ’Cl) = ABEND
P " C 1) = 0

That is» P is always differentiated from P* and P*'. We
see that the set where PCx) = P'Cx) for T is emptyr the
same is true of PCx) = P"Cx).

It is obvious that the set C0>1) provides branch coverage.
By defining Sf in this manner it can be seen that branch
coverage can be stated in terms of completeness. As a
simple extension of branch coverage* multiple condition
coverage can also be stated in terms of completeness.

Chapter 3* Effectiveness and Completeness 60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1,5 Mutation analysis completeness

As we have seen for different testing approaches the
challenge is to develop the set of P' in a way that will
lead to our intuitive understanding of T. For mutation
this is a straightforward, the P* set is the set of
mutations of P.

If for a test set T, there exists a P* such P*(x) =
PCx) for all x in T then either they are equivalent (in
mutation parlance, P* dies) or the test set is not
complete.

3.1.6 Error seeding completeness

Given the program P let the Pn' be formed such that
each Pn* differs from P by one error that is intentionally
inserted. If for a test case set T, P and one of the P*s
get the same result, since they are constructed to be

Chapter 3, Effectiveness and Completeness 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

different, then T is not complete. Once they produce
different output, the seeded error is discovered. Looking
at it this way, error seeding is a special case of
mutation; however, in the error seeding approach the
length of time it takes to find errors and the number of
test cases run is used to predict the remaining number of
indigenous errors.

3.1.7 Assertion completeness

Assertions don't really fit into this scheme since
the assertions are added to code and then exercised with
test cases that are developed using another approach. At
a minimum we could assure that each assertion is at least
exercised once using a simplified version of the P's for
statement coverage.

Chapter 3, Effectiveness and Completeness 62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1.8 Weak mutation complete;ess

In weak mutations testing a program P is segmented
into sections Cl>C2>...Cn. A mutation transformation is
applied to a given Ci to produce £i = (Ci*» Ci"» Ci'" ...).
The test cases must then differentiate Ci from Ci . That
is* Ci must compute a different value from each of the £i
although* the program P with Ci and a version with one of
the £i may result in the same output.

Part of Howden's complex definition of completeness
is based on the need to support this segmented program.
A simpler approach would be to consider T to be complete
for P relative to £ » if T is complete for Ci relative to
Ci for all i <= n. P is the collection of programs formed
from the Ci's.

Chapter 3; Effectiveness and Completeness 63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.2 AN EXTENSION OF THE COMPLETENESS MEASURE

The purpose of this section is to develop a metric
to measure software correctness. Howden's completeness
metric is used as a base. ?.rpor each testing methodology,
N and each set of test cases, T, and program, P, and
variations of the program £ = (P1,P2,... PN), T is either
complete (1) or not complete (0) relative to N and £_*.
First, an extension of completeness is defined to extend
the possible number of values from just 0 and 1 to all the
reals in the range 0 to 1. This will be based on the set
£ and our intuition about what should be tested. The
resulting metric is applicable to both structural based
testing approaches (for example, statement coverage) and
functional based testing approaches (for example,
cause-effect graphing).

Given a set of testing methods, N = (Ml»M2>...Mn); a
program P; a set of programs £ = (PI,P2,...Pn) with the
same domain as P; and a set T of test cases, then CA, the
composite completeness metric is defined as:

Chapter 3, Effectiveness and Completeness 64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CACT,P, £)= CCM1,T*P, £) + . . . CCMn >T»P» £) or

n
CA(T,P, £)= C<Mr*T*P, £)

r=i

It should be noted that CA is based on a specific test set*
T* a specific program* P» and the £ programs. Since it
is usually clear from the context* CA(T»P» £) is
abbreviated to CA in the remainder of this paper. For the
same reason* C(Mr) has been used and will continue to be
used as an abbreviation for CCMr»T»P» £).

Example programs are taken from the literature to
show that the higher the CA the less likely that errors
will occur. Then we can answer such questions as whether
another test approach would help* should we work to raise
one of the C's to one* etc. The time and effort of doing
this is not included* that is we are assumed to have
unlimited time* not a real world situation.

Given £ = <PI,P2*...P n)* program P* and test set T,
the meaning of complete with a range of 0 or 1 has been
defined. It will now be expanded to the range 0 to 1 by

the following extended definition of completeness.

Chapter 3* Effectiveness and Completeness 65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

If T is complete for P relative to m of the elements of P
then T is (m/n) * 100 percent complete or m/n complete.

For example if T is complete on all P then the value
is one. If T is not complete for any of the elements of
P then the value is zero. If T is complete for 25% of the
elements of P then value is .25. By using this method we
have extended the definition of complete from just 0 and
1 to the range 0 to 1.

Statement coverage, as we discussed in an earlier
section can be thought of as having the set P defined by
individually changing each instruction (that is one
element of P for each instruction). Therefore, the
complete metric is a representation of the percent of
instructions that are executed by the test set T, one
hundred percent statement coverage results in a complete
metric of one. This is represented as C(Statement) = 1.
If no statements are executed C(Statement) = 0, if 25% are
executed C(Statement) = .25.

Chapter 3, Effectiveness and Completeness 66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

For branch coverage* assuming each branch instruction
has two possible outcomes* we can consider the £ as having
two members for each branch (see an earlier section* for
details on how to generate P for branch coverage). So
C(Branch) is one if we have 100% branch coverage* C(Branch)
is .75 if we have 75% branch coverage etc. It is
straightforward to expand the ideas used in the branch
approach to develop CCMultiple Condition) such that it is
one if and only if there is 100% multiple condition
coverage.

In the cause-effect graphing approach a procedure is
used to develop a cause-effect graph* which is used to
generate a table from which we obtain the number of test
cases and attributes of each test case. The elements of
P can be constructed in the following manner. If T* the
test set* is composed of test inputs* Tl* T2»... Tm then
a Pq is developed to correspond to each Tq and having the
property that* when all the attributes that define Tq are
true then P and Pq when exercised by Tq will give different
results. In addition* when all the attributes that define
Tq are not true then P and Pq when exercised by Tq will
give the same results. In this way* we have defined the

Chapter 3* Effectiveness and Completeness 67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C(Cause-effeet) such that it represents the percent of the
test cases required that are exercised. It should be noted
that C(Cau‘se-ef f ect) is objectively obtained from the
cause and effect conditions that are subjectively chosen
by the person testing the code. This is not the case with
the branch; statement and multiple condition metrics since
they are based on the structure of the program and not the
functions to be performed.

For path testing an approach similar to the
cause-effect generation of £ is used. For each path the
elements of £ can be built as follows. If Tq is a test
case that exercised path q> then Pq should be formed such
that Pq should produce the same result when path q is not
exercised. In this way CCPath) is a measure of the paths
that are exercised.

Mutation testing can be measured directly by the
completeness metric. C(Mutation) is simply the percent
of mutant programs; in the set; £ ; that are eliminated
by the mutation algorithm. That is C(Mutation) is defined
as:

Chapter 3; Effectiveness and Completeness 68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(Number of dead mutants)/(Total number of Mutants).

This concept can also be extended to other
approaches, for example, in the error seeding methods,
CCError seeding) is:

(Number of found seeded errors)/(Total number of seeded
errors).

As in mutation and cause-effect graphing, we must let
common sense prevail and select a reasonable number of
seeded errors in an intelligent manner. For example, if
a small number of errors are seeded (say one) and if it
is found, the C value of one could lead to a false sense
of assurance. Assertions, domain testing, weak mutation
and all other testing methods can also be measured in this
manner.

The next step is to generate a composite completeness
metric, CA, as the sum of the completeness metric for the
approaches used. The methods to be studied are statement
coverage, branch coverage, multiple condition coverage,
path analysis, cause-effect graphing and mutation

Chapter 3, Effectiveness and Completeness 69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

analysis. In this case* applying the concepts covered in

section " 3.2 An extension of the completeness measure"
on page 64:

CA = C(Statement) + C(Branch) +
CCMultiple Condition) + C(Path) +
C(Cause-effect) + C(Mutation)

The problems chosen to compute the composite completeness*
CA * for are a text reformatter program* triangle
classification program* a quadratic equation program and
a sort program. Each is discussed in Chapter 4.

3.3 TEST METHODS AS A SUBSET OF MUTATION

One of the problems in dealing with test case and test
set evaluation is the various different methods used to
generate the test cases. It would be ideal if there were
only one method of generating test cases and one simple
approach to measuring the effectiveness of these test
cases. As is explained below* it is possible to consider
most testing approaches as a subset of mutation. As far

Chapter 3* Effectiveness and Completeness 70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

as can be determined> this has not previously been reported
in the literature. This result is not specifically used
further in this dissertation; however, it serves to link
the individual approaches discussed earlier in this
chapter.

! ,
We will show in this section that every test approach

that results in the generation of test cases can be
considered as a subset of the mutation approach. Those
that do not generate test cases such as program proving
and symbolic execution are not considered in this
discussion. For a given criteria and a program, P , a set
of test cases T = (Tl, T2» ...Tn) are needed; from this
set T we will construct a set P = (PI, P2» ... Pm) of
mutants of P. We will then show that if T is complete
relative to P then T satisfies the criteria for the testing
method that is being applied.

To construct the elements of Pq of P , for each unique
Tq in T, we generate a mutant Pq with the following
properties:

Chapter 3, Effectiveness and Completeness 71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1) Pq, when exercised ay Tq, will produce a different
result than P when exercised by Pq.

2) Pr, for r t q, when exercised by Tq will produce the
same result as P when exercised by Pq.

*

This is certainly possible, for at a minimum, we could add
a section to the beginning of program Pq to check for the
input that is associated with test case Tq and, if present,
generate an output outside the range of output of P. If
not present, the same code as in P would be executed.

Now if T is complete for P relative to P , then the
criteria for this testing method is met. By construction
the set T is complete relative to £ for the program P.

It has been shown that all methods that generate test
cases can be considered a mutation based approach by
selecting the mutant programs based on the testing
criteria. We have already covered how to do this
algorithmically for statement coverage, branch coverage,
multiple condition coverage, path testing and cause-effect
graphing. Although this is an interesting observation,

Chapter 3, Effectiveness and Completeness 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

it is intuitively easier to think of statement coverage
as exercising every instruction in a program versus
differentiating a collection of mutants from a parent
program. The same is true of the other methods discussed.

> ■ !

Chapter 3» Effectiveness and Completeness 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3, EXAMPLES

3 ,1 TEXT REFORMATTER EXAMPLE

As a first example six methods of test case selection
are considered: statement coverage* branch coverage*
multiple condition coverage* path testing* cause-effect
graphing and mutation* and a completeness value C is
computed for each. The composite completeness measure CA
is then computed as the summation of the C*s. The text
reformatter program (Goodenough and Gerhart* 1975)
slightly modified (Walsh* 1983) is listed in Figure 7 on
page 75. The Nassi-Shneiderman chart for this program is
shown in Appendix E.

The problem can be stated as follows: Given an input
text having the following properties:

11: It is a stream of characters* where the characters are
classified as break and nonbreak characters. A break

Chapter A* Examples 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 ALARM :=FALSE;
2 BUFPOS:= 0;
3 FILL: =o;
4 REPEAT
5 INCHARACTER(CW)
6 IF CW=BL OR CW=NL OR CW = ET
7 THEN BEGIN
8 IF BUFP0S*0
9 THEN BEGIN

10 IF FILL+BUFP0S<MAXP0S AND FILL*0
11 THEN BEGIN
12 OUTCHARACTER(BL);
13 FILL:=FILL+l;END
14 ELSE BEGIN
15 OUTCHARACTER(NL)»
16 FILL:=0;END
17 FOR K :=1 STEP 1 UNTIL BUFPOS DO
18 OUTCHARACTER(BUFFER(K))J
19 FILL:=FILL+BUFPOS;
20 BUFPOS:=0 J END END
21 ELSE
22 IF BUFP0S=MAXP0S
23 THEN ALARM:=TRUE
24 ELSE BEGIN
25 BUFPOS:=BUFP0S+1J
26 BUFFER(BUFPOS):=CW END
27 UNTIL ALARM OR CW=ET;

Figure 7. Text Reformatter Program

character is a BL (blank), NL (new line indicator), or ET
(end-of-text indicator).

12: The final character in the text is ET.

Chapter 4, Examples 75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13: A word is a nonempty sequence of nonbreak characters.

14: A break is a sequence of one or more break characters.

(As a result, the input can be viewed as a sequence of
words separated by breaks with possibly leading and
trailing breaks, and ending with ET.)

The program's output should be the same sequence of
words as in the input with the following properties:

01: A new line should start only between words and at the
beginning of the output text, if any;

02: A break in the input is reduced to a single break
character in the output;

03: As many words as possible should be placed on each
line (that is, between successive NL characters);

04: No line may contain more than NAXPOS characters (words
and BL's);

Chapter 4, Examples 76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

05: An oversize word (that is* a word containing more than
MAXPOS characters) should cause an error exit from the
program (that is, a variable Alarm should have the value
TRUE);

We will assume throughout this example that MAXPOS = 3 so
that short test cases can be developed. For C(Statement)
to be 1, three test cases are needed, the following will
suffice:

1. A, A, A,
2. A, A, BL
5. A, BL , B

This will be referred to as test set I. This set
doesn't result in all branches being exercised in all
directions and C(Branch) is 7/8 (7 of 8 branch directions
are exercised). The eight possible branch conditions can
be seen in the Nassi-Shneiderman chart in Appendix E. This
test set also doesn't exercise all the conditions as
required in multiple condition coverage; 10 of 11 are
exercised so C(Multiple condition) is 10/11.

Chapter A, Examples 77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

We can add a test case:

4. NL? ET

to set I to obtain test set II which has the same
characteristics as test set I except CCBranch) = 1.
Likewise we can add test case:

5. A ? A, A, ET

to set II to form set III which has the same
characteristics of test set II except CCMultiple
Condition) = 1.

The test set shown in Figure 8 on page 79 was
developed to meet the criteria for the cause-effect
graphing approach. Details of the cause-effect deviation
are included in Appendix C.

Of course? CCCause-effect graphing) is l; and since
the branch and statement test cases are a subset of IV?
C(Branch) and CCStatement) are also 1? CCMultiple
condition coverage) is again 10/11. Test set I covers 3

Chapter 4? Examples 78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 . A* A* A* Ai *
2. A* A* BL* B* B, ET
3. A* BL* B* ET
4. NL , ET
6. A
7. A* BL* B* NL * ET
8. A* BL * B * BL * ET
9. BL * ET

10. ET
11. A* NL, ET
12. A* BL* ET
13. A* ET
14. A* A * BL * B, B* NL*
15. A* A* BL* B* B * BL *

Figure 8. Test'cases for C-E approach

of the 14 conditions* test set II and III each 4 of the
14 conditions.

For the mutation approach* a set of mutants are
developed in an intuitive manner* that is* each
instruction is deleted* equals are changed to not equals*
less than to less than or equal to* less than to greater
than* and to or* zero to ones* etc. Test set V is composed
of test set IV plus the following two cases:

16. A* A* BL* B* NL* ET
17. A* A* BL* B* B* BL* C* BL* D* ET

Chapter 4* Examples 79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

\

There are about sixty mutant programs that were defined
by modifying the original program. Those mutant programs
that were syntactically correct were then exercised by the
test cases in test set IV. Fifty eight of the sixty mutants
were eliminated by this set of test cases. A small program
was written to exercise the mutant programs and compare
the actual and expected results.

For test sets I* II and III the most direct method
of computing C(Mutation) is to exercise those test cases
against the 60 mutants and determine how many are
eliminated. Since* this is a cumbersome approach* a good
approximation is the number of test cases included in the
16 required for a C(Mutation) = 1 with test case V. This
is 3/16* A/16* A/16* respectively for test sets I* II* and
III.

A final test set VI can be formed by adding:

5 A* A* A* ET

Chapter A* Examples 80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

to test set V. This provides i. value of 2 for all the
methods used.

Path testing requires that each path through a
program be executed by at least one test case. For
programs containing loops this requirement is impractical
due to the very large or infinite number of paths that are
possible. The paths are usually divided into a finite and
manageable number of classes and at least one test case
is generated for each class.

The method chosen to limit the number of paths in the
text reformatter program is to continue with the
assumption that the maximum line length is three and with
the view of the program as handling one character at a
time. If we consider that* the program can have four
initial states* (zero to three characters in the buffer)
then there are eighteen possible paths through the
program. They can be enumerated as shown in Figure 9 on
page 82.

Two paths are logically impossible and four more are
impossible with the assumption that the maximum line

Chapter 4, Examples 81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CONDITION C-E
CAUSE

PATH
111111111

123456789012345678
CW=BL or CW=NL or CW=ET NOT 1 000011111111111111
BUFP0S=MAXP0S 2 0011----------------
BUFP0S*0 6 a i ---- OOaillllllllll
FILL+BUFPOS<MAXPOS AND 5 AND 7 ------ 000000111111

FILL*0
INITIAL BUFP0S=1 NA ------ 1 0 0 1 0 0 1 0 0 1 0 0
INITIAL BUFP0S=2 NA ------ 010010010010
INITIAL BUFP0S=3 NA ------ 001001001001
CW=ET OR ALARM=TRUE 8 OR NA 010101000111000111
Figure 9. Paths for text reformatter

length is three. The remaining twelve paths can be covered
by test set Vllt which includes the test cases 1, 3-8, 10,
and 13-15 from set IV, (there are only eleven cases due
to multiple loops with an individual test case). A summary
of the test cases included in each set is shown in
Figure 10 on page 83.

As we expected, the sum of the C*s under
consideration, CA, increases from test set I to VI. A
summary is shown in Figure 11 on page 84.

Chapter 4, Examples 82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TEST
CASE

TEST SET
II III VI VII

10
12
13
14
15
16
17

Figure 10 Test cases
Reformatter

sets for Textversus

Throughout this dissertation, we will measure the
number of structural errors in a program, not the number
of domain errors that will cause an incorrect result. The
prime reason for this approach is to prevent the imprecise
measurements that would result by having, say, one
structural error that is responsible for an infinite
number of domain errors. The next step is to determine
if by increasing the value of CA the program is more

Chapter 4, Examples 83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TEST SET

I II III IV V VI VII

Statement
Coverage

1 1 1 1 1 1 1

Branch 7/8 1 1 1 1 1 1
Multiple
Condition
Coverage

10/11 10/11 1 10/11 10/11 1 1

Cause
Effect
Graphing

3/14 4/14 4/14 1 1 1 11/14

Mutation 3/16 3/16 3/16 58/60 1 1 14/16
Path
Testing

3/12 4/12 5/12 11/12 11/12 1 1

CA 3.44 3.77 3.86 5.79 5.82 6.0 5.75

Figure 11. Completeness Metric for Text Reformatter

reliable. One method is to determine which of the five
sample errors in the Goodenough paper would be found by
each' of the test sets. A program was written in BASIC to

Chapter 4» Examples 84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

answer this question. The results are shown in Figure 12
on page 86.

None of the test sets will uncover one of the errors
due to our selection of a maximum line length of three.
The error that is not found is deleting line 13 of the
program: FILL = FILL + 1. The variable FILL is then one
less than it should be; however, no errant decisions are
made, since the maximum number of characters on a line is
dust three and there are no combinations of space available
on a line and space used on a line that will cause an
incorrect branch by the decision instruction that has FILL
as a operand. If we increase the maximum number of
characters on a line to any number greater than three, this
instruction would be significant. The errors found
represent various classes of errors including:
inappropriate path selection, missing path and missing
action. We can see from the above table, that for this
example the higher the value of CA the higher the number
of errors found.

Chapter 4, Examples 85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TEST SET CA NUMBER OF
ERRORS FOUND

TOTAL NUMBER
OF ERRORS

I 3.44 2 5
II 3.77 3 5

III 3.86 3 5
IV 5.79 3 5

VII 5.82 3 5
V 6.00 4 5

VI 5.75 4 5

Figure 12. CA versus errors for Text Reformatter

4.2 TRIANGLE CLASSIFICATION EXAMPLE

The next example is the triangle classification
problem that can be stated as follows: Determine whether
three integers representing three lengths constitute an
equilateral, isosceles, or scalene triangle or cannot be
the sides of any triangle. A simple basic program to solve
this problem is shown in Figure 13 on page 87.

For C (Statement) to be 1, the following four test cases will
suffice:

Chapter 4, Examples 86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

50 READ A, B, C
100 IF NOT (A<B+C) THEN GOTO 500
110 IF NOT (B<A+C) THEN GOTO 500
120 IF NOT (C<A+B) THEN GOTO 500
130 IF (A=B) AND (B=C) THEN GOTO 600
140 IF <A=B) AND <B*C) THEN GOTO 700
150 IF (A#B) AND (A=C) THEN GOTO 700
160 IF (A*B) AND (A*C) AND (B=C) THEN GOTO 700
170 IF CA#B) AND (A*C) AND (B*C) THEN GOTO 800
500 PRINT "NOT A TRIANGLE": END
600 PRINT "EQUILATERAL TRIANGLE": END
700 PRINT "ISOSCELES TRIANGLE": END
800 PRINT "SCALENE TRIANGLE": END

Figure 13. Triangle classification program

1 . 1» 1> 1
2. 2, 2, 3
3. 3, 4, 5
4. 1 , 0 , 0
For C(Branch) = 1 we need four additional test cases for
the branch directions not already exercised* a sufficient
set is as follows:

5. 0* 1* 0
6 . 0* 0 * 1
7. 2, 3, 2
8. 3, 2* 2

Since there are no complex decision points CCMultiple
Condition) is always equal to C(Branch). Also since there

Chapter 4* Examples 87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

are no loops in this program C(Path) is always equal to
C(Branch).

The next approach to be considered for this program
is the mutation concept. About forty mutant programs are
defined as follows: replace ail less than signs by less
than or equal to* replace less than by greater than*
replace equals by not equal* replace not equal by equal*
replace A by B* and by deleting each instruction. Several
of the resulting mutant programs are impossible due to
conflicting conditions. When the remainder are run
against the existing eight test cases* two mutants remain.
The test cases that must be added to kill these two mutants
are:

9. 6, 2, 4
10. 3* 2* 4

The next approach used was cause-effect graphing with
the causes as follows:

Chapter 4* Examples 88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1. A*B
2. B/C
3. B=C
4. A=C
5. A<B+C
6. B<A+C
7. C<A+B

The relationships were straightforward and the effects
were a equilateral triangle* an isosceles triangle* a
scalene triangle or no triangle. The analysis showed six
test cases were required; a set that satisfies the criteria
is 1* 2* 3* 4* 7 and 8.

A summary of the test sets is given in Figure 14 on
page 90.

Six relatively simple errors (Myers* 1976) were then
inserted in the program to see which test cases would
detect them as shown in Figure 15 on page 91.

As we can see, the number of errors found increase
with an increasing CA* the same number found with the last

Chapter 4* Examples 89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CASES CASES CASES CASES
1 - 4 1 - 8 1 - 1 0 1-A,7,8

STATEMENT
COVERAGE

1 1 1 1

BRANCH
COVERAGE

.5 1 1 6/8

MULTIPLE
CONDITION
COVERAGE

.5 1 1 6/8

PATH
COVERAGE

.5 1 1 6/8

CAUSE-EFFECT
GRAPHING

A/6 1 1 1

MUTATION 27/AO 38/AO 1 6/10

CA 3.8A 5.95 6.00 A. 85

Figure 1 4 . Completeness Metric for Triangle Program

two sets due to the small difference in the CA's and since
they were relatively simple errors.

Chapter 4 , Examples 90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TEST CA NUMBER OF TOTAL NUMBER
CASES
1 - 4 3.84

ERRORS FOUND
4

OF ERRORS
6

1-4,7,8 4.85 5 6
1 - 8 5.95 6 6
1 - 1 0 6.00 6 6

Figure 15. CA versus errors for triangle problem

4.3 QUADRATIC EQUATION EXAMPLE

A program to solve a quadratic equation (Kernighan
and Plauger, 1976) was slightly modified and run in
Fortran. The problem is to solve the quadratic equation
AX2 + BX + C = 0, that is, to find the two roots, one root
or give an indication that it is not solvable. The program
is shown in Figure 16 on page 92.

Chapter 4, Examples 91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

WRITE (*,102) A,B,C,
102 FORMAT (*OA= *, F12.5, B='F12.5' C=*F12.5)

IF (B.EQ.O.AND.C.EQ.O) GOTO 15
IF (B .N E .0.AND.C .NE.0) GOTO 50
IF (A) 30,20,30

15 IF (A.EQ.O) GOTO 9035
20 WRITEC*,9010)
9010 FORMAT ("OTRIVIAL CASE, TWO OR MORE ZEROS')

RETURN
30 IF (C) 60,40,60
40 XA=B/A

XB=0
GOTO 100

50 IF (A.NE.O) GOTO 60
XA=-C/B
XB=0.0
GOTO 100

60 Q=B*B-4.*A*C
XX=-B/(2.*A)
IF (Q) 80,70,80

70 XA=XX
XB=XX
GOTO 100

80 QA=ABS(Q)
XS=SQRT(QA)/(2.*A)
IF (Q) 110,110,90

90 XA=XX+XS
XB=XX-XS

100 WRITE (*,9020) XA,XB
9020 FORMAT (5H Xl= ,F12.5,3X,4HX2 = ,F12.5)

RETURN
110 XA=XS

XB=-XS
WRITE(*,9030) XX,XA

9030 FORMAT (5H XI = ,F12.5,2H + ,F12.5)
WRITE (*,9031) XX,XB

9031 FORMAT (5H X2 = ,F12.5,2H + ,F12.5)
RETURN

9035 WRITE (*,9036)
9036 FORMAT ('0A=0 PROGRAM STOPPED')

RETURN
END

Figure 16. Quadratic Equation Program

Chapter 4 , Examples 92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

This program* which is i ot structured* has several
known errors that were included as found in Kernighan and
Plauger. By trial and error it can be seen that statement
coverage can be accomplished (that is C(Statement) = 1)
by the following test cases:

1. A = 0 B = 0 c = 0
2. A = 0 B = 1 c = 1
3. A = 0 B = 0 c = 1
A. A = 1 B = 1 c = 0
5. A = 1 B = s c = 4
6. A = 1 B = 2 c = 1
7. A = 1 B = 1 c = 1

For Branch coverage to be complete* C(Branch) = 1*
one needs two additional test cases:

8. A = 1 B = 0 C = 0
9. A = 1 B = 0 C = 1

For CCNultiple Condition) = 1* one must insure that
all the IF statements are exercised in all directions* this
requires two additional test cases:

10. A = -1 B = 0 C = 1
11. A = 1 B = 0 C = -1

Chapter A* Examples 93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

For the cause - effect graphing approach# the inputs
were as follows:

1) A = 0
2) B2 - 4AC >0
3) B2 -4AC = 0
4) B2 -4AC <0
5) B = 0
6) C = 0

The outputs were the proper roots# found by evaluating the
normal solution: Root 1 = C-Bri+-SQRT-CB2 -4AC))/2A and Root
2 = (-B -SQRT (B2 -4AC))/2A» with special cases to avoid
division by zero# to handle imaginary numbers# and to
handle single and no root solutions. The result is that
for CCCause - effect) = 1, it is sufficient to exercise
the program with test cases 1»5#6 and 7. It should be
noted that cause - effect graphing does not use the actual
program structure in generating the criteria for test
cases; they are entirely based on the functions to be
performed and the evaluator's knowledge of the problem.

The next approach to be evaluated is path testing.
Since there are no loops in this program# it is reasonable
to obtain a C(Path) = 1. Careful and tedious analysis
shows that there are eleven theoretical paths through the
program and ten are logically possible. These ten paths
can be covered by test cases 1 - 10.

Chapter A# Examples 94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

For the mutation approach* f:lve types of mutants were
selected:

1) A replaced by B
2) XA replaced by XB
3) EQ replaced by NE
4) NE replaced by EQ
5) Each line deleted

This is a limited set (there are fifty-six total mutants)
due to the practical problems of generating and exercising
mutant programs without a tool. Test cases 1 - 1 1 were
used as a base and all the mutants were found with these
cases.

A summary of the coverage discussed is given in
Figure 17 on page 96* some of the results* that are less
than one* represent the percent of the test cases present
(a C of 1 would represent 100%) rather than the percent
of coverage. Since these two metrics should be relatively
close* this is done to reduce the computational
complexity.

There were seven errors identified in the Kernighan
and Plauger program. The number of errors that would be

Chapter 4* Examples 95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Test Cases

1-7 1-9 1-11 1*5*6,7 1-10
Statement
Coverage 1 1 1 4/7 1
Branch
Coverage 14/16 1 ' i • 1 4/9 1
Multiple
Condition
Coverage 9/12 10/12 1 4/11 11/12
Cause-Effect
Graphing 1 1 1 1 1
Mutation 7/11 9/11 1 4/11 10/11
Path
Testing 7/10 9/10 1 4/10 1

Total CA 4.95 5.54 6.0 3.13 5.81

Figure 17. Completeness
equation

metric for quadratic

discovered by the methods discussed and with the test cases
selected are shown in Figure 18 on page 97.

As can be seen* the number of errors found is monotone
nondecreasing with the composite completeness metric* CA.
One error is not found by any of the test cases; this is
due to lack of a structured programming approach and the

Chapter 4* Examples 96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TEST CASES CA
NUMBER OF TOTAL NUMBER

ERRORS FOUND OF ERRORS
1*5,6,7 3.13 2 7

1-7 A. 95 5 7
1-9 5.54 6 7
1-10 5.81 6 7
1-11 6.00 6 7

Figure 18. CA versus errors for quadratic program

nature of the error. The program* as written* will produce
an incorrect message: "Trivial case* two or more zeros"
if A=0» B*0 and C=0. The correct answer is that there is
one root at zero.

It is interesting to note that running these eleven
test cases against the corrected program in Kernighan and
Plauger results in three cases failing due to two errors.
Due to the nature of the problem and the ease at which the
results can be checked* it is natural to try the assertion
approach on the incorrect program. If an ending assertion
states that for any roots found AX2 + BX + C = 0 then two

Chapter A* Examples 97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

of the seven errors woul& have been found; if an additional
assertion* that the roots not be equal was inserted an
additional error would have been uncovered. This is due
to the fact that some of the errors were the printing of
incorrect error messages.

4.4 SORT EXAMPLE

In this simple example a sort fragment of a program
(McCracken* 1974) is analyzed. The problem is to sort the
vector A which has N elements. A program to accomplish
this is shown in Figure 19 on page 99.

Statement coverage is relatively straightforward* for
C(Statement) = 1 we must have one test case:

1. A=(3*2*1)

For C(Branch) to be 1 we must add a test case with
increasing elements.

Chapter 4* Examples 98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

70 NM1=N-1
80 FOR 1=1 to NM1
90 IPI.US1 = I+1
100 FOR J=IPLUS1 to N
110 IF (A(I)OA(J)) THEN GO TO 150
120 TEMP=A(I)
130 A(I)=A(J)
140 A(J)=TEMP
150 NEXT J <
1 6 0 NEXT I
Figure 19. Sort Program

2. A=(l,2,3)

Since there are no multiple conditions in the program;
CCNultiple Condition) is equal to C(Branch). For C(Path)
to be 1 many additional test cases would need to be
generated based on the value of N. In order to limit this*
we will consider a subset of the paths that execute the
outer loop a minimum number of times (one); a maximum (nine
was chosen as a workable limit); and a number of loops in
the middle (say five). The inner DO loop is executed based
strictly on the number of outer loop iterations. For each
path the IF statement should be executed in both
directions. For this criteria; in addition to the test
cases already developed we need:

Chapter 4; Examples 99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3. A=(l*2*3*9*8*5*4*7*6)
4. A=(5,3*l,2,4)

For the mutation approach* several substitutions are
made* changing only one item at a time. The mutants are
as follows: replace I by J* replace J by I* replace + by
-* replace - by + , replace 1 by 0* replace < by >* replace
< by <= and* deleting each line. Exercising these mutant
programs with the test cases developed so far results in
five mutants (of twenty eight) that are still alive* four
mutants are correct* although not efficient and one
requires an additional test case to differentiate it from
the original program:

5. A=(-1 * -2, -3* -4, 10)

Due to the relatively simple causes (if the vector
is not in nondecreasing order* sort) and effects (a sorted
vector)* the cause- effect approach is not very practical.
If we assume* for the cause-effect analysis only* that the
maximum number of elements is three* and all permutations
of order are included* then in addition to test case 1 and
2 we need the following:

Chapter 4* Examples 100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6. A=(l* 3, 2)
7. A=(2, 1* 3)
8. A=(2, 3, 1)
9. A= (3 * 1 * 2)

A summary of the test cases developed is shown in
Figure 20 on page 102.

Next seven typical errors were introduced* they
included loops off by one* inappropriate initialization
and improper path selection. The nine test cases were
executed to see which errors they detected with the results
shown in Figure 21 on page 103.

As can be seen the number of errors found is monotone
nondecreasing with the CA metric.

4.5 DISCUSSION OF EXAMPLES

The four examples that were written in two languages
(Basic and Fortran) have shown that* for the sample

Chapter A* Examples 101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TEST CASES
1 1,2 1-4 1-5 1, 2,

6-9

STATEMENT
COVERAGE 1 1 1 1 1
BRANCH
COVERAGE .5 1 1 1 1
MULTIPLE
CONDITION
COVERAGE .5 1 1 1 1
PATH
TESTING .25 .5 1 1 .5
MUTATION .2 . A .8 1 .4
CAUSE-EFFECT
GRAPHING 1/6 2/6 2/6 2/6 1

CA 2.61 A.22 5.12 5.32 4.90

Figure 20. Completeness metric for sort program

programs, the percent of known errors that are found by a
test set behaves in a monotone, nondecreasing manner when
compared with the composite completeness measure, CA. The
significance of this metric, CA, is due to the fact that

Chapter A, Examples 102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TEST CASES CA NUMBER OF TOTAL NUMBER
FOUND ERRORS OF ERRORS

1 2.61 4 7
1, 2 4.22 5 7
1, 2, 6 - 9 4.90 5 7
1 - 4 5.12 6 7
1 - 5 5.32 7 7

Figure 21. CA versus errors for sort program

now, for any test cases selected by a particular method
or methods, we have a uniform measurement. This has the
potential to be used to assess the relative usefulness of
test case sets; to help decide how much more effort should
be put into testing, and to help decide when to stop
testing. Prior to the development of the CA metric, there
was no uniform method of evaluating sets of test cases.
The evaluation of testing methods is no longer purely
subjective, it is more systematic and objective. For easy
reference, a summary of the data collected in Chapter 4
is found in Appendix A.

The reason for selecting the six test approaches that
compose CA are two. First, they represent both white box

Chapter 4, Examples 103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and black box testing; both common approaches (statement)
and less known and used methods (mutation). Second* the
approaches used were not extremely difficult to implement
with tools that are easily available. Statement* branch*
and multiple condition coverage are relatively
straightforward and although another person testing the
program could develop a different set of test cases* it
is likely that they would be similar. For path testing*
when all paths could not reasonably be executed* due to
loop iterations* it is important to select the path
criteria in an intuitive and reasonable manner. It is
possible that another person would select different path
constraints* develop different test cases to exercise
them* and discover different errors. The metric CA for
path testing was based on the number of paths that were
in the subset selected* not on the total number of possible
paths. This is due to the high number of possible paths
that would result in low CA values and small differences
between CA values.

For mutation* one again has to select the mutants in
an intuitive manner and in sufficient numbers. For
example* it makes little sense to generate a thousand

Chapter A* Examples 104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

mutants based on the first line of multiline program and
none based on the other lines. For the example programs*
the mutants were based on experience. Cause-effect
graphing can also be influenced by the level of detail used
to develop the inputs and outputs.

As an extension to this work* a different set of test
approaches could be evaluated* ground rules could be
developed for path* mutation and cause-effect graphing
concepts and more complex programs could be analyzed.

Chapter 4* Examples 105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5, AN EXPERIMENT

5.1 OVERVIEW OF EXPERIMENTAL APPROACH

The purpose of this chapter is to gain some
experimental results to lend support to the conclusion
that the completeness metric, CA, does predict the
percentage of errors that are found in the example programs
and in the experimental programs. An outline of the steps
to be taken is as follows:

1) A problem will be defined and given to the subjects.
They will return the first pass of their program (that is
after the first error free compile). Also to be returned
is a list of errors that were found between the first pass
and their final program. These errors will be considered
the known errors. This is a reasonable approach since the
text reformatter is used and any additional errors that
are found, as a result of running the sets of test cases

Chapter 5, An Experiment 106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

already developed, will be added co the collection of known
errors.

2) The first pass programs will then be tested by
developing six sets of test cases each; these will be
developed by insuring that each test approach has a
completeness value, C» of one for at least one of the six
sets of test cases.

3) Based on the data in the previous chapter, and the
experimental data to be collected, explain how CA will
predict the number of errors. The first step is to develop
an equation:

Error % = XI * C(Statement) + X2 * C(Branch) +
X3 * CCMultiple Condition) + X4 * C(Path) +
X5 * CCCause-Effect) + X6 * CCMutation) +
XO

This will be done based on running a regression analysis
on the data obtained. This analysis will be interpreted
for the sample programs and an approach given, albeit, not
a statistical approach, for an interpretation for an
arbitrary program.

Chapter 5, An Experiment 107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5-2 EXPERIMENTAL PROBLEM DEFINITION

The problem used in this experiment# the text
reformatter problem# discussed in Goodenough and Gerhart's
paper was slightly modified. The modifications were to
insure that the programs are subroutines with a standard
input and output format and to make the program slightly
easier to automatically verify. The specifications for
this program are included in Appendix B.

5.3 RESULTS OF EXPERIMENT

Programs were obtained as discussed above and wen-
tested to see which test cases discovered the known errors.
In addition# any additional errors that were found were
added to the list of known errors. There were several
errors of this type# partly due to voluntary method of
having the programs written. Minor insignificant#

Chapter 5# An Experiment 108

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

annoying errors were corrected before running the
experiment; for example* one program asked for the maximum
number of characters before each test case. The
cause-effect test set was developed in section "4.1 Text
reformatter example” on page 74; the other test sets were
developed based on the structure -of the programs. The
results are shown in Figure 23 on page 111 and Figure 22
on page 110.

The experiment was performed by two people* both
using the same specifications; they are referred to in the
figures as Experiment 1 and Experiment 2. As can be seen
in Figure 24 on page 112 the metric CA is* again* monotone
nondecreasing versus the percent of errors discovered.

5.4 DEVELOPING A MODEL

The purpose of developing a model* in this case* is
to obtain a statistical base to make intuitive arguments.
It is not to develop a pure mathematical model. There are

Chapter 5* An Experiment 109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Test Cases

1,2 1 2,11 1-3,5,8,10,
11,13-15

1-16

Statement
Coverage

1 1 1 1

Branch
Coverage

2/3 1 1 1

Multiple
Condition
Coverage

2/3 1 1 1

Path
Testing

2/10*
15/18

3/10* 15/18
15/18

8/10*
15/18

Cause-Effect
Graphing

2/3 3/13 8/13 1

Total CA 2.63 3.48 4.44 4.65
Figure 22. Completeness Metric for Experiment 1

two reasons for this; first, the amount of data available
is not sufficient, at this time, to develop a theoretical
model and, second, it has not been shown that all the
required statistical assumptions are true. For example,
it has not been shown that the form of the model is linear,
although, intuitively that is a reasonable assumption; it
has not been shown that the regressor variables are

Chapter 5, An Experiment 110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Test Cases
1,2*11,13

15
1*2,11,
13*15,6

1-13 1*3*5*6*22
12-4,16

Statement
Coverage

1 1 1 .6

Branch 5/6* 19/24 5/6* 4/6*
Coverage 19/24 19/24 19/24

Multiple 5/6* 19/24 5/6* 4/6*
Condition
Condition

19/24 19/24 19/24

Path
Testing

3/9 4/9 7/9 1.0

Cause-Effect
Graphing

5/13 6/13 1.0 7/13

Total CA 3.01 3.51 4.07 3.17
Figure 23. Completene ss Metric for Experiment 2

measured without error* although it is reasonable that
they have no or small errors. A simple linear regression
model is used instead of a more sophisticated approach*
such as* multiple variable regression or prime factor
analysis due to the limited amount of data available and
the desire to use a simplified statistical approach to make
intuitive judgements.

Chapter 5, An Experiment 111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TEST CASES CA NUMBER OF TOTAL NUMBER
ERRORS FOUND OF ERRORS

Experiment 1
1,2 2.63 1 3
1,2,11 3.48 1 3
1-3,5,8,10,11 4.44 2 3

13-15
1-16 4.65 3 3
Experiment 2
1,2,11,13,15 3.01 1 2
1,2,11,13, 3.51 1 2

15,6
1-13 4.07 2 2
1,3,5,6 3.17 1 2

11-14,16

Figure 24. CA Versus Errors for Experiment

The first approach used was to test the composite
metric, CA, for significance as a predictor of the percent
of known errors found by using the Statistical Analysis
System, SAS (SAS, 1982). The results show that the percent
of errors can be predicted, for the programs studied, as
shown in the following equation:

Error V* = .03 + .15 * CA =
= .03 + .15 * (C(Statement) + C (Branch) +

C (Multiple Condition) + C (Path) +
C (Cause - Effect) + C (Mutation))

Chapter 5, An Experiment 112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Unfortunately this model only accounts for 58% of the
variation in the percent of errors found. That is 58% of
the total variation is attributed to the fit rather than
left to residual error.

The next approach used was multiple regression
analysis. The model shown below was the result* with those
coefficients whose Probability > |T| value is greater than
.05 omitted* as not significant contributors to the error
percent. The Probability > |T| is the probability that a
+ statistic would obtain a greater absolute value than that
observed given that the true parameter is zero. It is a
generally accepted* statistical assumption that if this
variable is greater than .05* the associated parameter
estimate is not significant.

Error % = .92 * C (Statement) + .48 C (Path) + .05

This mcdel accounts for 75% of the variance* and from a
mathematical standpoint is the best that can be developed
using the method of linear regression.

Chapter 5* An Experiment 113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The model above is not intuitively appealing because
it used only the metrics for statement and path testing.
Since there is an imbedding relationship between
C(Statement) , C(Branch) and CCNultiple Condition) a model
was developed to include this relationship by considering
another variable:

i

(C Statement) + .2 * CCBranch) +.1 * +CCNultiple Condition)

The coefficients for CCBranch) and CCNultiple Condition)
were selected in an arbitrary manner based on intuition
and the desire to keep the total variable significants for
the programs studied. This parameter was based on the
intuitive concept that the set of tests cases that provides
statement coverage is a subset of the set that provides
branch coverages which in turn is a subset of the set that
provides multiple condition coverage. This approach helps
to alleviate the problem of counting CCNultiple Condition)
as three Cthat is one for CCStatement)s one for CCBranch)
and one for CCNultiple Condition)); although that is the
approach we used by computing CA as the sum of all the C's.
With the above example a CCNultiple Condition) of one would
contribute 1.3. The model developeds as discussed abovef

Chapter 5s An Experiment 114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

will account for 71% of trs variance* which is close enough
to the maximum possible (75%) to give us confidence that
it is a reasonable prediction.

The resulting equation* again with only those coefficients
that are significant* for the programs studied* is as
follows:

Error % = .61 * (CCStatement) + .2 * CCBranch) +
.1 * CCMultiple Condition)) +
.46 * CCPath)

The SAS analysis used to develop this model is included
in Appendix D.

5.5 RESULTS OBTAINED FROM THE MODEL

The model developed shows that it is possible to
predict the percent of errors that will be found based on
the completion metrics for individual testing approaches
for the programs studied.

Chapter 5* An Experiment 115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Given an arbitrary program P and a set of test cases
T, the technique developed can be used to compute the
metric called "error percent". This metric should not be
interpreted as the percent of errors that will be found;
it should be interpreted as an indicator* for the person
doing the testing* of the reliartive usefulness of the the
test cases. For example* a metric of .6 does not mean 60
percent of the errors will be found; it should be
interpreted* that if test cases are added and the .6 does
not significantly increase then perhaps an incorrect
approach to adding test cases has been chosen. On the other
hand* if by adding test cases* the .6 increases the person
testing should feel that progress is being made. This
interpretation is consistent with the literature on the
components of the composite metric; one hundred percent
statement coverage is considered better that fifty percent
coverage* however* the number of errors left and therefor
the program correctness cannot be determined from the
statement metric.

The final model accounts for 71% of the variation*
that is 29% is due to residual error and 71% is due to fit.

Chapter 5* An Experiment 116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Although there is not formal rule* statistically, 71% is
good; it is reasonable that an increase in the number of
data points will cause this to increase slightly. In fact*
as data points were added during the development of this
dissertation* the amount of variation due to fit*
generally increased. This percent is also called
coefficient of determination.

Chapter 5* An Experiment 117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 6, SUMMARY AND CONCLUSIONS

6.1 SUMMARY

In this dissertation an approach to defining a test
case metric is presented; this approach is demonstrated
to be valid by means of examples taken from the literature.
It can be used to help assess the relative usefulness of
a collection of test cases. This was accomplished by first
developing a metric to measure the completeness of test
cases developed by a particular testing approach. A
previously existing concept was expanded to permit this
metric to have a continuous range. The second step was
to develop a metric which is a composite of those developed
for specific approaches. This composite metric was
monotone^ nondecreasing with the percent of errors found.
The third step was to use the components of the composite
metric to statistically predict the percent of errors
remaining* in the programs studied.

Chapter 6» Summary and Conclusions 118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In addition, items of lesser significance include the
equivalence of the ENF and cause-effect graphing approach;
the realization that most test methods can be considered
as a subset of mutation and a classification of testing
strategies.

6.2 FUTURE RESEARCH DIRECTIONS

The six methods of test case selection were chosen
to allow both black box and white box testing, with an eye
towards ease of implementation, or at least not an
impossible implementation. In the future, addition
testing approaches could be analyzed in this manner; for
example, domain testing, weak mutation testing and error
seeding could be directly evaluated using this
methodology. Other testing approaches, such as symbolic
execution, could also be evaluated using this approach,
provided a completeness metric is developed; this does not
seem complex, it just has not been done yet. Some thought

Chapter 6, Summary and Conclusions 119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

has to be given to the definition of one hundred percent
test coverage for symbolic execution.

Automated software tools are needed to pursue the
metrics developed in this dissertation any further. In
an ideal system* the prtfgiiammeir would submit his program
and a set of test cases -with-'expecftferd results. The system
would compute the individual completeness metrics and the
composite metric; also available would be aides to
increase the metric* for example* a list of paths not
executed. As cited in Chapter 2* some software tools are
available for specific approaches* however* no composite
tools were found.

As indicated in Chapter 4* some of the values for
completeness are based on approximations* mostly due to
the clerical nature of running mutation exercises. For
example* if ten test cases provided one hundred percent
coverage* then it was assumed that any five test cases
would provide fifty percent test coverage. This
assumption is intuitively correct* however* the results
may be slightly off. With an automated system* this
approximation would not be necessary. The selection and

Chapter 6* Summary and Conclusions 120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

number of mutant programs was also limited by the manual
time involved; in an automated system the number of mutants
to be generated would be limited by the computer time
available and would generally be much larger.

It has been assumed* and shown* for the examples
analyzed* that the higher the CA metric* the more likely
it is that all the known errors will be discovered. Again*
this seems logical; however* a future study* with more than
six test methods* could address the questions: How high
a CA value is enough? When should you stop to obtain a
given confidence that all the errors are found?

It has also been assumed that an error is an error;
that is* there is not a severity metric for errors. This
is clearly not the case. For example* a formatting error
on an airline report is much less severe than an airline
controller program error that causes a plane to crash.
It seems feasible that the severity of errors could be
defined and then a test case could be given a weighted
value that it would contribute to the completeness
measure.

Chapter 6* Summary and Conclusions 121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The problem of the size of the domain of Sf in some
cases is obvious. For example* with branch coverage* in
other cases it is not obvious. In the case of mutation*
one can develop a large number of mutants* insure the test
cases differentiate them* and obtain a high completeness
measure* however* if the'* mutants are not selected in an
intelligent manner* this-may not be significant. That is
to say* in the future* a measurement should be developed
to measure the largeness or goodness of the set Sf.

Chapter 6* Summary and Conclusions 122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX A> SUMMARY OF j-XAMPi.ES

Abbreviations used in this appendix:
PGM - Program
TR - Text Reformatter Program
QUAD - Quadratic Equation Program
TRI - Triangle Program
SORT - Sort Program
STM - Statement Coverage
BR - Branch Coverage
MCC - Multiple Condition Coverage
CE - Cause-Effect Graphing
MUT - Mutation Testing
PATH - Path Analysis
CA - Composite Completeness Metric
ER% - Percent of Known Errors Found

Appendix A> Summary of examples 123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PGM ER% STM BR MCC CE MUT PATH CA

TR . 4 1 r-(0• .91 .21 .19 inCM• 3.24
TR .6 1 1 .91 .29 .19 .33 3.77
TR .6 1 1 1 .29 . 19 .92 3.86
TR .6 1 1 .91 1 .97 .92 5.79
TR .8 I 1 .91 1 1 .92 5.82
TR .8 1 1 1 1 1 1 6

QUAD .71 1 .87 .75 1 .63 .7 4.95
QUAD .86 1 1 .83 1 • .81 .9 5.54
QUAD .86 1 1 1 1 1.0 1 6
QUAD .28 .57 . 4 4 .36 1 .36 . 4 3.13
QUAD .86 1 1 •. 92 1 .91 1 5.81

TRI .67 1 .5 .5 .67 .67 .5 3.84
TRI 1 1 1 1 1 .95 1 5.96
TRI 1 1 1 1 1 1 1 6
TRI .83 1 .75 .75 1 .6 .75 4.85

Appendix A> Summary of examples 124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PGM ER% STM BR MCC CE MUT PATH CA

SORT .57 1 .5 .5 . 16 .2 .25 2.61
SORT .71 1 1 1 .33 . A .5 4.22
SGRT .85 1 1 1 .33 .8 1 5. 12
SORT 1 1 1 1 .33 1 1 5.32
SORT .71 1 1 1 1 .4 .5 4.90

Appendix A» Summary of examples 125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX B, SPECIFJACTIONS GIVEN TO SUBJECTS

B »1 TEXT REFORMATTER

The following is the specifications and examples
given to subjects who wrote a text reformatting program:

Submit a program prior to it's being debugged and
then after it is debugged, with some kind of indication
of the errors that were found.

Assume the input is in a vector, called A, and the output
is to be put into a vector called B. (that is, do not
really print anything)

The problem can be stated as follows: Given an input
text having the following properties:

Appendix B, Specifiactions given to subjects 126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

II: It is a stream of characters* where the characters are
classified as break and nonbreak characters. A break
character is a 3 (blank)* $ (new line indicator)* or %

(end-of-text indicator).

12: The final character in the text is %.

13: A word is a nonempty sequence of nonbreak characters.

14: A break is a sequence of one or more break characters.

(As a result* the input can be viewed as a sequence of
words separated by breaks with possibly leading and
trailing breaks* and ending with %.)

The program's output should be the same sequence cf
words as in the input with the following properties:

01: A new line should start only between words and at the
beginning of the output text* if any*

02: A break in the input is reduced to a single break
character in the output*

Appendix B* Specifiactions given to subjects 127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

03: As many words as possible should be placed on each
line (i.e.r between successive $ characters); Any $ in
the input should not result in a $ in the output unless
the line is full (i.e. a $ in the input can be considered
just like a 3 in the input)

04: No line may contain more than MAXPOS characters (words
and 3*s);

05: An oversize word (i.e.? a word containing more than
NAXPOS characters) should cause an error exit from the
program (i.e.* put "ERROR" in B.);

Some examples might be helpful. MAXPOS is the maximum
number of characters that can be set to a constant at the
beginning of your program. For the following examples we
will assume that MAXPOS is set to five.

Appendix B> Specifiactions given to subjects 128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Example 1:

Input in A:
This3is33a$test%

Output that logically would be printed:
this

i

is a
test

Output in B:
$this$is3a$test

Example 2:

Input in A:
a3bigword%

Output that logically would be printed:
"ERROR"

Output in B:
"ERROR"

Appendix B> Specifiactions given to subjects 129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Example 3;

Input in A:
3a3therea33are$$a31otaofaathing3$3A$BCD%

Output that logically would be printed:
there
are a
lot
of
thing
A B C
D

Output in B:
$there$are3alotof$thing$A3B3C§D

Appendix B» Specifiactions given to subjects 130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX C* EQUIVALENCE EfcP AND C-E PROCEDURES

C.l SUMMARY OF APPROACH

The purpose of this appendix is to convince the reader
that the cause-effect graph procedures and the Equivalent
normal form (ENF) procedure can result in an identical set
of test cases being developed. The significance of this
equivalency is that the ENF algorithm is well documented
and has been implemented for years in the hardware arena.
The cause-effect graphing approach was developed in 1973*
and although it appears to be a very logical approach to
test case selection* it is not extensively used. This is
partly due to the fact that once the graph is generated*
there is not an easy-to-follow algorithm to generate the
test cases. Since the ENF procedure is equivalent* the
graph can be generated by way of the cause-effect method
and then the test cases automatically produced by way of
the ENF algorithm.

Appendix C* Equivalence ENF and C-E procedures 131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In the future* a procedure could be written* or
possibly picked up from a hardware system to produce the
ENF test conditions. This was not done in this
dissertation due to the lack of extremely complex programs
to be analyzed. This equivalence is shown by procedurally
stepping through a program of medium complexity* the text
reformatter program* discussed in an earlier section.

C.2 CAUSE-EFFECT FOR TEXT REFORMATTER

As the first step in cause-effect graphing* all the
causes (input conditions or system transformations) are
identified and given a unique identifying number. Next,
all effects (output conditions or changes in the system
state) are identified and numbered. A graph is then
generated by linking the causes to the effects with the
proper logical relationships. The relationships used are
AND* OR* identity (straight line) and NOT as well as
various constraint symbols. A parenthesis is used to
indicate the scope of the AND's and OR's. For example* in

Appendix C* Equivalence ENF and C-E procedures 132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 26 on page 136* input cv'ditions 3 OR 4 OR 8 must
be true in order for condition 20 to be true.

As the size and ability tc work with the cause-effect
graphs increases quickly as the program specifications
become more complex; the graph generated for our sample
problem will represent the processing of just one
character. The processing of this character will be
affected by the prior state of the program* for example*
what characters if any* were processed prior to the current
character. The input conditions (1-8) and output
conditions (90-94) are shown in Figure 25 on page 134.

The resulting cause-effect graph* developed from the
Nassi-Shneiderman chart* is shown in Figure 26 on page
136. The 0 and dotted line connecting input conditions
1* 3* 4* and 8 indicate that one and only one of these
input conditions are possible at one time. Reading the
graph indicates* for example* that if condition 3 is true
(the character is a NL) then the intermediate condition
20 is true. If condition 6 is also true (at least one
character has previously been found and not printed)* then

Appendix C* Equivalence ENF and C-E procedures 133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Input Conditions:
1. CHARACTER IS NOT BL OR NL OR ET
2. BUFPOS = MAXPOS (word is too long)
3. CHARACTER IS NL
4. CHARACTER IS BL
5. BUFPOS + FILL<MAXP0S (word found will fit on

•• current line)
6. BUFPOS * 0 (at least one character

found and not printed)
7. FILL * 0 (a word was already

printed on this line)
8. CHARACTER IS ET
Output conditions:
90. NO OUTPUT (character put in buffer)
91. ALARM (word size too long)
92. BL AND BUFFER PRINTED
93. NL AND BUFFER PRINTED
94. NO OUTPUT (multiple or preceding

break character)
Figure 25. Input/output conditions for C-E graph

condition 21 is true (an intermediate state). If condition
22 is also true (the previous word was already printed on
the line and the current word will fit on the same line)>
then output 92 is true. This means a BL will be printed
followed by the word in the buffer.

The next step in using the cause-effect graphing
methodology is to generate a limited entry decision table

Appendix C , Equivalence ENF and C-E procedures 134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

that represents the portions of the graph that makes each
output condition true (one at a time). The method used
is to sequentially select each effect to be true and to
trace back through the graph to find all combinations of
causes that will make the given effect true. Each
combination of effects is recorded in the decision table
as a row. Some possible combinations may be ignored as
they are not all necessary to generate the test cases and
there may be an unreasonable number or combinations. All
possible combinations may in fact mask certain causes.
As an example; if four conditions are ORED together* it
is only necessary to iterate four input conditions to make
this true (each input true* while the others are false)
instead of the fifteen possible combinations that make the
output true.

The decision table for the text reformatter problem
is shown in Figure 27 on page 137. The rows represent the
condition of each cause or effect while the columns
represent a particular test case to be developed. A dash
(-) indicates a don't care position. This decision table
shows that we must develop fourteen test cases.

Appendix C» Equivalence ENF and C-E procedures 135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

* 20

9322

Figure 26 Cause-effect graph for text reformatter

The final step is to convert the columns of the
decision table into test cases. This is accomplished in a
trial-and-error manner by inspecting the decision table
and generating a test case for each column. For example*
for column 1* we need condition 1 to be true (character
is not a break character) and condition 2 (word is too

long) to ba falsa. The choice of the latter A as an input

Appendix C» Equivalence ENF and C-E procedures 136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TEST CASE NUMBER

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1
2 0 1
3 - - 1 0 0 1 0 0 1 0 0 1 0 0
A - - 0 1 0 0 1 0 0 1 0 0 1 0
5 - - 1 1 1 - - - 1 1 1 0 0 0
6 - - 1 1 1 0 0 0 1 1 1 1 1 1
7 - - 1 1 1 - - - 0 0 0 1 1 1
8 • • • 0 0 1 0 0 1 0 0 1 0 0 1

90 1 0 0 0 0 0 0 0 0 0 0 0 0 0
91 0 1 0 0 0 0 0 0 0 0 0 0 0 0
92 0 0 1 1 1 0 0 0 0 0 0 0 0 0
93 0 0 0 0 0 0 0 0 1 1 1 1 1 1
94 0 0 0 0 0 1 1 1 0 0 0 0 0 0

Figure 27. Decision table for C-■E method

obviously satisfies these constraints. One choice for the
fourteen test cases* as well as the expected output is
shown in Figure 28 on page 138.

Appendix C, Equivalence ENF and C-E procedures 137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Test Input Expected output
case

1 A (Character A in BUFFER)
2 A * A * A * A ALARM MESSAGE
3 A*BL*B*NL*ET A BL B
4 A * BL * B * BL * ET A BL B
5 A*BL*B*ET A BL B
6 NL ,ET (NO OUTPUT)
7 BL ,ET (NO OUTPUT)
8 ET (NO OUTPUT)
9 A*NL*ET A

10 A*BL*ET A
11 A*ET A
1 2 A*A*BL*B,B*NL*ET AA

BB
13 A*A*BL*B*B*BL*ET AA

BB
14 A*A*BL*B*B*ET AA

BB

Figure 2 8 . Test cases for C-E graphing method

Cause-effect graphing is used as a procedural method
to generate test cases. In addition* insight is gained
into the problem to be solved by converting the
specifications into the boolean graph. It can also assist
in the discovery of incomplete and inconsistent
specifications. Note that* generally* the test cases
developed using the multiple condition coverage approach
are not a subset of the cause-effect graph test cases. This

Appendix C* Equivalence ENF and C-E procedures 138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

situation is due to the fact ir. multiple condition
coverage all possible comcinstians cf condition outcomes
must be covered (for example, NOT 5 AND NOT 7 in
Figure 26 on page 136). This is not the case with the
cause-effect graph algorithm.

C.3 EQUIVALENT NORMAL FORM FOR TEXT REFORMATTER

This method to generate a set of test cases is based
on the equivalent normal form (ENF) of a hardware circuit.
The ENF is developed by expressing the output of each gate(
output conditions or intermediate states for software) as
a function of the inputs and at the same time preserving
the identity of each gate.

Appendix C, Equivalence ENF and C-E procedures 139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The graph in Figure 26 on page 136 can be used as a
basis for generating the ENF. The ENF's for our sample
problem are shown in Figure 29 on page 141.

Each character (for example NOT 5[93]) is called a
term. Terms connected by ANDS< ia?e called literals. The
next step is to test each -literal in an ENF for stuck at
0 by assigning l's to all literals in the term containing
it and making all other terms equal to zero. It is only
necessary to test one literal per term using this method
(testing more will result in duplicate tests). Applying
these procedures we obtain the following result:

for ENF (91) - 11913=1
2191] = 1

for ENF (90) - 1[90]=1
NOT 2190] = 1» 2[90] = 0

Appendix C» Equivalence ENF and C-E procedures 140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ENF(91)
ENF(VO)
ENF(94)

ENF(92)

ENF(93)

Figure 29

Appendix C,

(1 AND 2)191] = 1191] AND 2[91]
(1 AND NOT 2)[90] = 1[90] AND NOT 2[90]
(NOT 6 AND 20)[94] =
(NOT 6 AND (3 OR 4 OR 8)(20])[94J =
(NOT 6[94] AND 3(20,941) OR
(NOT 6(94] AND 4(20,941) OR
(NOT 6(94] AND 8(20,941)
(22 AND 21)1921 =
((5 AND 7)[22] AND (6 AND 20)121 1)I 92 1 =
5(22,921 AND 7(22,92] AND
6(21,921 AND 20(21,92]=
(5(22,921 AND 7(22,92] AND
6(21,921 AND 3(20,21,921 OR
(5(22,921 AND 7(22,92] AND
6(21,921 AND 4(20,21,92] OR
(5(22,921 AND 7(22,921 AND
6(21,921 AND 8(20,21,92]

= (NOT 22 AND 21)193] =
(NOT (5 OR 7)) [22,92] AND (6 AND 20)[21,92]

= (NOT 5 1 22,92]OR NOT 7 (22,921) AND 6(21,92]
AND (3 OR 4 OR 8) [20,21,92] =
NOT 5(22,921 AND 6(21,92] AND 3(20,21,92] OR
NOT 7(22,921 AND 6(21,92] AND 3(20,21,92] OR
NOT 5(22,921 AND 6(21,92] AND 4(20,21,92] OR
NOT 7(22,921 AND 6(21,92] AND 4(20,21,92] OR
NOT 5(22,92] AND 6(21,921 AND 8(20,21,92] OR
NOT 7(22,921 AND 6(21,92] AND 8(20,21,92]

ENF for example program

Equivalence ENF and C-E procedures 141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

for ENF C94)
- Literal 1 - NOT 6[94]=1, 6(941=0

3(20,941=1, 4120,941=0, 8[20,94]=0
Literal 2 - 6I94]=0

4120,941=1, 3120,941=0, 8[20,941=0
Literal 3 - 6(941=0

8120,941=1, 3[20,941=0, 4120,941=0

Similar expressions can be developed for ENF's 92 and
93. A summary of the tests developed is shown in
Figure 30 on page 143.

As the anticipated output for each ENF is 1 we see
that these are exactly the same conditions that were
generated using the cause-effect graphing method.

The ENF algorithm also requires that tests be
generated for the stuck at 1 fault (a false output is
expected) for all output conditions. This is not required

Appendix C, Equivalence ENF and C-E procedures 142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Input Co r*di -ions
1 2 3 4 5 6 7 8

91 1 1
90 1 0

ENF 94 - - 1 - - 0 - -

94 - - - 1 - 0 - -

94 - - - - - 0 - 1
92 - - 0 0 7 1 1 1
92 - - 0 1 1 1 1 0
92 - - 1 0 1 1 1 0
93 - - 1 0 0 1 1 0
93 - - 1 0 1 1 0 0
93 - - 0 1 0 1 1 0
93 - - 0 1 1 1 0 0
93 - - 0 0 0 1 1 1
93 • 0 0 1 1 0 1

Figure 30. ENF conditions for text reformatter

in this case since we tactfully chose output that are
mutually exclusive.

Appendix C» Equivalence ENF and C-E procedures 143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX D, STATISTICAL ANALYSIS

LIST OF DATA

OBS ERROR -Statement Branch Multiple
PERCENT Coverage Coverage Condition

Coverage
1 0.40 1.00 0.87 0.91
2 0.60 1.00 1.00 0.91
3 0.60 1.00 1.00 1.00
4 0.60 1.00 1.00 0.91
5 0.80 1.00 1.00 0.91
6 0.80 1.00 1.00 1.00
7 0.71 1.00 0.87 0.75
8 0.86 1.00 1.00 0.83
9 0.86 1.00 1.00 1.00

10 0.28 0.57 0.44 0.36
11 0.86 1.00 1.00 0.92
12 0.67 1.00 0.50 0.50
13 1.00 1.00 1.00 1.00
14 1.00 1.00 1.00 1.00
15 0.83 1.00 0.75 0.75
16 0.57 1.00 0.50 0.50
17 0.71 1.00 1.00 1.00
18 0.85 1.00 1.00 1.00
19 1.00 1.00 1.00 1.00
20 0.71 1.00 1.00 1.00
21 0.50 1.00 0.65 0.65
22 0.50 1.00 0.79 0.79
23 1.00 1.00 0.65 0.65
24 0.50 0.6 0.52 0.52
25 0.33 1.0 0.66 0.66
26 0.33 1.0 1.00 1.00
27 0.66 1.0 1.00 1.00
28 1.00 1.0 1.00 1.00

Appendix D» Statistical analysis 1 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF DftTfl. C S ^T IN U E D

IBS Cause MUTATION PATHS VARIABI
Effect
Graphing

TESTING EXECUTED TOTALS

1 0.21 0.19 0.25 3.44
2 0.29 0.19 0.33 3.77
3 0.29 0.19 0.42 3.86
A 1.00 0.97 0.92 5.79
5 1.00 1.00 0.92 5.82
6 1.00 1.00 1.00 6.00
7 1.00 0.63 0.70 4.95
8 1.00 0.81 0.90 5.54
9 1.00 1.00 1.00 6.00

10 1.00 0.36 0.40 3.13
11 1.00 0.91 1.00 5.81
12 0.67 0.67 0.50 3.84
13 1.00 0.95 1.00 5.96
14 1.00 1.00 1.00 6.00
15 1.00 0.60 0.75 4.85
16 0.16 0.20 0.25 2.61
17 0.33 0.40 0.50 4.22
18 0.33 0.80 1.00 5.12
19 0.33 1.00 1.00 5.32
20 1.00 0.40 0.50 4.90
21 0.38 0.00 0.33 3.01
22 0.49 0.00 0.44 3.51
23 1.00 0.00 0.77 4.07
24 0.53 0 1.00 3.17
25 0.15 0 0.16 2.63
26 0.23 0 0.25 3.48
27 0.61 0 0.83 4.44
28 1.00 0 0.65 4.65

Appendix D, Statistical analysis 145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

w
a:

a
a

a:
m
u
uuuizh

PLOT OF ERRORS BY TOTAL OF C METRICS

PLOT OF ERRORS*TOT
1.0 +

0.9 +

0.8 +

0.7 +

0.6 +

0.5 +

0.4 +

0.3 +

0.2 +

* *

**

* * *

*
*

* *

**

 + + + + + +--------+—
2.4 3.0 3.6 4.2 4.8 5.4 6.0

VARIABLE TOTALS
Regression of Errors on Total of Other Variables

Appendix D> Statistical analysis 146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

STATISTICS FOR CA

DEP VARIABLE: ERRORS ERROR PERCENT
SUM OF MEAN

SOURCE DF SQUARES SQUARE F VALUE
MODEL 1 0.754467 0.754467 36.228
ERROR 26 0.541458 0.020825
C TOTAL 2 7 1.295925
PROB > F 0.0001

ROOT MSE 0.144310 R-SQUARE 0.5822
DEP MEAN 0.697500 ADJ R-SQ 0.5661
C.V. 20.68956

PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETERS

INTERCEP 1 0.031398 0.113977 0.275
TOT 1 0.148152 0.024614 6.019

Appendix D> Statistical analysis

PROB >
I T |

0.7851
0.0001

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PREDICTED VERSUS ACTUAL FOR CA

PREDICT STD ERR STD ERR STUDENTOBS ACTUAL VALUE PREDICT RESIDUAL RESIDUAL RESIDUAL
1 0.400000 0.541041 0.037676 -.141041 0.139305 -1.0122 0.600000 0.589931 0.032606 0.010069 0.140578 0.072
3 0.600000 0.603265 0.031446 -.003265 0.140842 -0.023
A 0.600000 0.889198 0.041930 -.289198 0.138084 -2.094
5 0.800000 0.893643 0.042493 -.093643 0.137912 -0.679
6 0.800000 0.920310 0.045979 -.120310 0.136789 -0.880
7 0.710000 0.764750 0.029472 -.054750 0.141268 -0.3888 0.860000 0.852160 0.037470 0.007840 0.139360 0.0569 0.860000 0.920310 0.045979 -.060310 0.136789 -0.441

10 0.280000 0.495114 0.043294 -.215114 0.137662 -1.56311 0.860000 0.892161 0.042305 -.032161 0.137970 -0.233
12 0.670000 0.600302 0.031694 0.069698 0.140786 0.49513 1.000 0.914384 0.045190 0.085616 0.137052 0.625
14 1.000 0.920310 0.045979 0.079690 0.136789 0.583
15 0.830000 0.749935 0.028630 0.080065 0.141441 0.56616 0.570000 0.418075 0.053842 0.151925 0.133889 1. 13517 0.710000 0.656599 0.028106 0.053401 0.141546 0.377
18 0.850000 0.789936 0.031299 0.060064 0.140875 0.426
19 1.000 0.819567 0.033986 0.180433 0.140251 1.287
20 0.710000 0.757343 0.029028 -.047343 0.141360 -0.335
21 0.500000 0.477336 0.045626 0.022664 0.136907 0.166
22 0.500000 0.551412 0.036508 -.051412 0.139615 -0.36823 1.000 0.634377 0.029219 0.365623 0.141321 2.58724 0.500000 0.501040 0.042534 -.001040 0.137899 -0.008
25 0.330000 0.421038 0.053418 -.091038 0.134059 -0.679
26 0.330000 0.546967 0.037003 -.216967 0.139485 -1.555
27 0.660000 0.689193 0.027307 -.029193 0.141703 -0.206
28 1.000 0.720305 0.027534 0.279695 0.141659 1.974

Appendix D» Statistical analysis 148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

STATISTICS FCZ INDIVID U A L METHODS

DEP VARIABLE: ERRORS ERROR PERCENT

SOURCE DF
SUM OF

SQUARES
MEAN

SQUARE F VALUE
MODEL
ERROR
C TOTAL
PROB > F

4
23
27

0.924726
0.371199
1.295925
0.00001

0.231182
0.016139

14.324

ROOT MSE
DEP MEAN
C.V.

0.127040
0.697500
18.21357

R-SQUARE
ADJ R-SQ

0.7136
0.6637

VARIABLE DF
PARAMETER
ESTIMATE

STANDARD
ERROR

T FOR HO:
PARAMETERS PROB > |T|

INTERCEP
St,Br,MCC
CE
MUT
PATH

1
1
1
1
1

-0.431229
0.615599
0.135203

-0.058904
0.461587

0.223855
0.174480
0.091763
0.090538
0.127343

-1.926
3.528
1.473

-0.651
3.625

0.0665
0.0018
0.1542
0.5218
0.0014

Appendix D> Statistical analysis 149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ACTUAL VERSUS PREDICTED FOR INDIVIDUAL C'S

PREDICT STD ERR STD ERR STUDENT
OBS ACTUAL VALUE PREDICT RESIDUAL RESIDUAL RESIDUAL

1 0.400000 0.480102 0.046896 -.080102 0.118067 -0.678
2 0.600000 0.543850 0.041259 0.056150 0.120153 0.467
3 0.600000 0.590934 0.039238 0.009066 0.120828 0.075
4 0.600000 0.866236 50.. 039555! ->.266236 0.120725 -2.205
5 0.800000 0.864469 0.040852 -.064469 0.120292 -0.536
6 0.800000 0.906936 0.040763 -.106936 0.120322 -0.889
7 0.710000 0.758859 0.036977 -.048859 0.121539 -0.402
8 0.860000 0.861504 0.035019 -.001504 0.122118 -0.012
9 0.860000 0.906936 0.040763 -.046936 0.120322 -0.390

10 0.280000 0.294630 0.103110 -.014630 0.074211 -0.197
11 0.860000 0.907313 0.038428 -.047313 0.121088 -0.391
12 0.670000 0.558624 0.046264 0.111376 0.118316 0.941
13 1.000 0.909881 0.039394 0.090119 0.120777 0.746
14 1.000 0.906936 0.040763 0.093064 0.120322 0.773
15 0.830000 0.768931 0.034362 0.061069 0.122304 0.499
16 0.570000 0.401958 0.051074 0.168042 0.116321 1.445
17 0.710000 0.620899 0.037183 0.089101 0.121476 0.733
18 0.850000 0.828131 0.064095 0.021869 0.109685 0. 199
19 1.000 0.816350 0.068865 0.183650 0.106755 1.720
20 0.710000 0.711485 0.051959 -.001485 0.115928 -0.013
21 0.500000 0.508113 0.039004 -.008113 0.120904 -0.067
22 0.500000 0.599615 0.038917 -.099615 0.120932 -0.824
23 1.000 0.795037 0.063912 0.204963 0.109792 1.867
24 0.500000 0.567408 0.106181 -.067408 0.069747 -0.966
25 0.330000 0.400393 0.050746 -.070393 0.116464 -0.604
26 0.330000 0.515543 0.047557 -.185543 0.117802 -1.575
27 0.660000 0.834641 0.065815 -.174641 0.108662 -1.607

Appendix D> Statistical analysis 150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

w
r
>
c
o
H
w
m
»

PLOT OF RESIDUALS FOR I N P I V I ^ A L C PREDICTOR

2.0 +

1.5 +

1.0 +

0.5 +

0.0 + * ---------

-0.5 +

- 1.0 +

-1.5 +

- 2.0 +

-2.5 +

x X X
x------*— *— xx-x-----

x x

*** xx
 X X X - - - - X — xx-xx-

X X
X

-3.0 +-

— +--------+ + + + + +--
0.3 0.4 0.5 0.6 0.7 0.8 0.9

PREDICTED VALUE

Appendix D» Statistical analysis 151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX E, NASSI—SHNEIDERMAN CHART FOR TEXT REFO^MATTER

ALARM=FALSE
BUFPOS=0
FILL=0

INCHARACTER CM
__________________________ u i j . ______________________

CW=BL OR CW=NL OR CW=ET
YES NO

BUFPOS*0
YES NO

BUFPOS5
YES

-MAXPOS
NO

FILL+BUFPOS<MAXPOS BUFPOS =
AND FILL*0 BUFPOS +

YES NO ALARM= 1
TRUE

OUTCHARACTER OUTCHARACTER BUFFER
BL NL (BUFPOS)

CM
FILL=FILL+1 FILL=0

FOR K=1 TO BUFPOS
OUTCHARACTER
BUFFER(K)

FILL=FILL+BUFPOS
BUFP0S=0

DO UNTIL ALARM=TRUE OR CW=ET
END

Appendix E » Nassi-Shneiderman Chart for Text
Reformatter 152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

BIBLIOGRAPHY

Acree, A. T. Jr.; On Mutation* Ph.D. Dissertation* Georgia
Institute of Technology* 1980.

Adrion* W. R.* Branstrad* M. A.* Cherniavsky J. C*
Validation* Verification* and Testing of Computer
Software, Computing Surveys. ACM* Vol. 14, No. 2,
June 1982.

Alberts* D. S.* The Economics of Software Quality
Assurance* Tutorial; Software Testing and
Validation Technioues. IEEE* 1978.

Boehm* B. W. * McClean* R. K. and Urfrig D. B.* Some
Experience with Automated Aids to the Design of
Large-Scale Reliable Software* Tutorial: Software
Testing and Validation Technigues* IEEE*1978.

Bibliography 153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Boehm, B. W . , The High Cost of Software, Tutorial:
SPftw^rg Testing and Validation Techniques, IEEE,
1978.

Budd, T. A., Mutation Analysis of Program Test Data, Ph.D
Dissertation, Yale University, May 1980.

Chapin, N., New Format for Flowcharts, Software - Practice
and Experience, Vol. A, 197A.

Chudleigh, M.; Software Reliability, Systems
International, July 1982.

Clarke, L. A.; A System to Generate Test Data and
Symbolically Execute Programs, IEEE Transactions
on Software Engineering, Vol. SE-2, No. 3,
September 1976.

Clarke, L. A., Hassell, J., Richardson D. J.; A Close Look
at Domain Testing, IEEE Transactions on Software
Engineering. Vol. SE-6, No. A, July 1982.

Bibliography 15A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

DeMillo? R. A.; Mutation Analysis as a Tool for Software
Quality Assurance? Proceedings of COMPSAC 80?
IEEE? 1980.

DeMillo? R. A.? Program Mutation: An Approach to Software
Testing? Report AD-A135775? Georgia Institute Of
Technology? April 1983.

Deutsch? L. P.? An Interactive Program Verifier? Ph.D.
Dissertation? University of California? Berkeley?
1973.

Duran? J. W. ? Wiorkowski? J. J.? Toward Models for
Probabilistic Program Correctness? Proceeding of
the Software Quality and Assurance Workshop. ACM?
November 1978.

Elmendorf? W. R.; Cause-Effecc Graphs In Functional
Testing? IBM Technical Report TR 00.2487? November
1973. ACM Computing Surveys. Vol. 8? No. 3?
September? 1976.

Bibliography 155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Fagan, M. E.; Design and .'ode Inspections to Reduce Errors
in Program Develspment, Tutorial: Software Testing
and Validation Techniques, IEEE, 1978, also
published as, Design and Code Inspections and
Process Control in the Development of Programs,
IBM Technical Report TR00.2763, June 1976.

Fosdick, L. D., Osterweil, L. J.; Data Flow Analysis in
Software Reliability, Computing Surveys. Vol. 8,
No. 3, September 1976.

Friedman, A. D., Menon, P. R.; Fault Detection in Digital
Circuits. Englewood, N.J., Prentice Hall, 1979.

Gabow, H. N.; Maheshwari, Osterweil, L. J.; On Two
Problems in the Generation of Program Test Paths,
IEEE Transactions On Software Engineering, SE-2,
No. 3 September 1976.

Gillion, P., Why are Users Getting Untested Programs?,
Computerworld ,Vol. XVII, No. 31, August 1983.

Bibliography 156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Glass, R. J.; Software Reliability Guidebook. Prentice

Hall 1979.

Goodenough, J. B. and Gerhart, S. L.» Toward a Theory of
Test Data Selection, IEEE Transactions on Software
Engineering, Vol.'SE-l, No. 2, June 1975, also in,
Tutorial; Software Tesiting and Validation
Techniques. IEEE, 1978.

Goodenough, J. B.; A Survey of Program Testing Issues,
Chapter 9, Research Directions in Computer
Science, The MIT Press, 1980.

Hansen, P. B.; Testing a Multiprogramming System,
Tutorial: Software Testing and Validation
Techniques. IEEE, 1978.

Hiedler, W. , Benson, J., Meeson, J., Kerbel, A.; Pyster,
A.; Software Testing Measures, Rome Air
Development Center, Report RADC-TR-82-135, May
1982.

Bibliography 157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Hogger, E. I., A Decision Table Approach to Reliable
Software* IAEA/Westinghouse Conference on Software
Reliability, 1977.

Howden, W. E.; Symbolic Testing and the DISSECT Symbolic
Evaluation System, Tutorial r Softwalna Testing and
Validation Techniques. IEEE, 1978.

Howden W. E.j A Survey of Static Analysis Methods,
Tutorial? Software Testing and Validation
Techniques, IEEE, 1978.

Howden, W. E.; Reliability of The Path Analysis Testing
Strategy, IEEE Transactions on Software
Engineering, Vol.SE-2, No. 3, September 1976, also
in, Tutorial: Software Testing and Validation
Technioues, IEEE, 1978.

Howden, W. E.; Weak Mutation Testing and Completeness of
Test Sets, IEEE Transactions on Software
Engineering, Vol. SE-8, No. A, July 1982.

Bibliography 158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Huang, J. C. ; An Approac* to °rcgram Testing; Commuting
Surveys, Vol. 7; 'r4o. 3; September 1975; also in;
Tutorial; Software Testing and Validation
Technigues; IEEE; 1978.

Kernighan; B. W.; Plauger; P. J.; The Elements of
Programning Stvle♦ McGraw - Hill; 1974.

Manna; Z., Waldinger, R.; The Logic of Computer
Programming; IEEE Transactions on Software
Engineering, Vol. SE-4, No. 3 May 1978.

McCracken; D. D.; A Simplified Guide to Fortran
Programming ,John Wiley; 1974.

Miller; E. F. Jr; Program Testing: Art Meets Theory;
Tutorial:___ Software Testing and Validation
Technigues, IEEE; 1978; also in Computer. July
1977.

Miller; E. F. Jr.; Program Testing Technology in the
1980's, Tutorial: Software Testing and Validation
Technigues, IEEE, 1978

Bibliography 159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Miller E. F. Jr., Melton R. A.; Automated Generation of
Testcase Datasets, Tutorial; Software Testing and
Validation Techniques, IEEE, 1978.

Miller E. F. Jr., Paige M. R., Benson J. P., and Wisehart
W. R.; Structural Techniques of Program Validation
Tutorial; Software Testing and Validation
Techniques, IEEE, 1978.

Mills, H. B., On the Statistical Validation of Computer
Programs, FSC-72-6015, IBM, 1972.

Musa, J. D.; The Measurement and Management of Software
Reliability, Proceeding of the IEEE. Vol. 68, No.
9, September 1980.

Myers, G. J.J Software Reliability. Principles and
Practices , Wiley - Interscience, 1976.

Neumann, P. G.; Some Computer-Related Disasters and Other
Egregious Horrors, ACM SIGSOFT Software
Engineering Notes, Vol. 10, No. 1, January 1985.

Bibliography 160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Osterweil* L. J.; A Proposal for an Integrated Testing
System for Computer Programs* University of
Colorado* Technical Report* October 1976.

Osterweil L. J.* Fosdick* L. D.J DAVE-A Validation Error
Detection and Documentation System for Fortran
Programs* Tutorial; Software Testing and
Validation Techniques* IEEE* 1978.

Phoha* S.* A Quantifiable Methodology for Software
Testing: Using Path Analysis* Project 4130* The
MITRE Corp.* December 1981.

Probert* R. L.* Optimal Insertion of Software Probes in
Well- Delimited Programs* IEEE Transactions on
Software Engineering* Vol. SE-8, No. 1* January
1982.

Ramamoorthy* C. V.* Ho* S. F.; Testing Large Software with
Automated Software Evaluation Systems* Tutorial;
Software Testing and Validation Techniques. IEEE*
1978.

Bibliography 161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Ramamoorthy, C. V.» Ho, S.F.; Chen, W. T.J On the Automated
Generation of Program Test Data, IEEE Transactions
on Software Engineering, Vol. SE-2, No.A December
1979.

Ramamoorthy, C. V., Bastani, F.; Software Reliability -
Status and Perspectives, IEEE Transactions on
Software Engineering, Vol. SE-2, No. A, July 1982.

Reynolds, J. C.; Proving Program Correctness, Rome Air
Development Center Report, RADC-TR-08-379, Vol.
V, 1980.

SAS Institute Inc. SAS User's Guide: Statistics , 1982.

Shankar, K. S.; A Functional Approach to Model
Verification, IEEE Transactions of Software

Engineering. Vol. SE-8, No. 2, March 1982.

.Stickney, M. E.; An application of Graph Theory to Software
Test Data Selection, Proceeding of the Software

Bibliography 162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Quality and Assurance Workshop» ACM, November
1978.

Tai, K.J Program Testing Complexity and Test Criteria,
Transactions on Software Engineering. Vol. SE-6,
No. 6, November 1980.

Walsh P. J.jAn Analysis of Test Case Selection, Phoenix
Conference Proceedings, IEEE, March 1983.

Wang, J. S.; Measuring Completeness of a Test Case Library,
IBM Technical Disclosure Bulletin, Vol. 23, No. 9
February 1981.

White, L. H., Cohen E. I.; A Domain Strategy for Computer
Programming Testing, IEEE Transactions on Software
Engineering, SE-6, May 1980.

Wilson, P. B., Building Quality into Software with
Effective Testing, Small Systems World. August,
1983.

Bibliography 163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Yaacob, M. and Hartley M. G;* A Survey Of Microprocessor
Reliability with an Illustrative Example* Int. J •
Elec. Ena. Education. Vol. 18, Pg 159-174, 1981.

Bibliography 164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

